Search Results

Now showing 1 - 2 of 2
  • Master Thesis
    Görüntü İşleme ve Makine Öğrenme Yöntemleri ile Yüz Tanıma
    (2020) Rushdı, Iman Raad; Şengül, Gökhan
    İnsan yüzü tanıma, insan yüzünün çok boyutlu karmaşık bir yapı olması nedeniyle zor ve karmaşık bir problemdir. Temel olarak; yüz tanıma bir insanın yüz görüntüsünden kimliğinin belirlenmesi olarak tanımlanabilir. Bu nedenle yüz tanımada görüntü işleme, bilgisayarlı görü ve makine öğrenmesi gibi farklı disiplinlerin bir arada çalışması gerekir. Yüz tanımlamasıyla ilgili temel zorluk; yüz tanımlamasıyla ilgili doğru özelliklerin, doğru bir şekilde nasıl tanımlanacağıdır. Bu çalışma, görüntüden özellik çıkarma ve özellik seçimine dayalı olarak insan yüzünün tanınması için bir yaklaşım sunmaktadır. Önerilen yüz tanıma sistemi ORL ve YALE veri kümelerinde test edilmiştir. Önerilen yöntem başlangıçta üç adımda uygulanmıştır. Ön işleme aşaması için Daubechies dönüşümü ile Ayrık Dalgacık Dönüşümü (DWT) uygulanmıştır. İkinci aşamada, Yerel İkili Kalıp (LBP) ve Gri Seviye Eş-Oluşum Matrisi (GLCM) esas alınarak özellik çıkarma aşaması uygulanmıştır. Üçüncü adım, Öklid Uzaklığı ile sınıflandırma aşamasını içermektedir. Ayrıca, özellik seçimi yaklaşımı için Parçacık Sürüsü Optimizasyonu (PSO) uygulanarak aynı deneyler uygulanmıştır. Çalışmada birkaç sonuç gözlemlemiştir: DWT ve LBP'nin birlikte uygulandığı ilk deneylerde; eğitim kümesindeki görüntü sayısındaki artışla birlikte ORL veritabanında %82,50 tanıma oranı, YALE veritabanında ise %90 tanıma oranı elde edilmiştir. Bununla birlikte, PSO algoritmasının uygulanması durumunda, ORL veritabanı için doğruluk oranını %95'e ve YALE veritabanında doğruluk oranı %93'e kadar artmıştır.
  • Master Thesis
    Iot için Rapsberry Pi ve Usb Hızlandırıcı ile Derin Öğrenme Tabanlı Yüz Tanıma
    (2021) Yıldız, Kutay; Koyuncu, Murat
    Bilgisayar bilimi alanında derin öğrenme üzerine yapılan araştırmalar son zamanlarda oldukça arttı. Bir çok alanda tahmin performansı bazında derin öğrenme uygulamaları lider durumdadır, ancak, gerektirdiği yüksek işlemci gücü oldukça fazladır. Derin sinir ağı (DNN) modellerinin optimizasyonu üzerinde çalışan bir çok araştırma mevcuttur. Model optimizasyonuna ek olarak derin öğrenme tabanlı makine öğrenmesi (ML) uygulamalarına yönelik verimli güç kullanımı sağlayan özel donanımlar geliştirilmektedir. Bu çalışmanın amacı mobil platformlar için geliştirilmiş yüz tanıma algoritmalarının detaylı bir karşılaştırmasını yapmaktır. Testlerde Raspberry Pi ve makine öğrenmesi uygulamaları için geliştirilmiş Google's Coral Edge tensor işlem birimi (TPU) kullanıldı. Farklı yüz tanıma adımları (yüz tanıma, tipik nokta tanıma, öznitelik çıkarma) tek tek test edildi. Bireysel testlere ek olarak yüz tanıma hattı bir bütün olarak test edildi. Eğitim sonrası tamsayı indirgeme tekniği mobil modellerin daha ileri optimizasyonunun yapılabilirliğini test etmek amaçlı kullanıldı. Mobil platformlara ek olarak mobil olmayan platform üzerinde karşılaştırma amaçlı testler yapıldı. Raspberry Pi 4 TPU ile birlikte kullanıldığında DNN bazlı yüz tanıma uygulamalarında saniyede 14.7 kare hıza ulaşılabildi. Bu çalışmada sunulan karşılaştırma sonuçları yüz tanıma alanında çalışma yürüten uygulamacılara katkıda bulunabilir.