Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    On the Rate of Convergence for the q-durrmeyer Polynomials in Complex Domains
    (Walter de Gruyter Gmbh, 2024) Gurel, Ovgu; Ostrovska, Sofiya; Turan, Mehmet
    The q-Durrmeyer polynomials are one of the popular q-versions of the classical operators of approximation theory. They have been studied from different points of view by a number of researchers. The aim of this work is to estimate the rate of convergence for the sequence of the q-Durrmeyer polynomials in the case 0 < q < 1. It is proved that for any compact set D subset of C, the rate of convergence is O(q(n)) as n -> infinity. The sharpness of the obtained result is demonstrated.
  • Article
    On the Lupas q-transform of Unbounded Functions
    (Walter de Gruyter Gmbh, 2023) Ostrovska, Sofiya; Turan, Mehmet
    The Lupa , s q-transform comes out naturally in the study of the Lupa , s q-analogue of the Bernstein operator. It is closely related to the Heine q-distribution which has a numerous application in q-boson operator calculus and to the Valiron method of summation for divergent series. In this paper, the Lupa , s q-transform (lambda(q)f)(z), q is an element of (0, 1), of unbounded functions is considered in distinction to the previous researches, where only the case f is an element of C[0, 1] have been investigated. First, the condition for a function to possess the Lupa , s q-transform is presented. Also, results concerning the connection between growth rate of the function f (t) as t -> 1(-) and the growth of its Lupa , s q-transform (lambda(q)f)(z) as z -> infinity are established. (c) 2023 Mathematical Institute Slovak Academy of Sciences