2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 13Citation - Scopus: 16An Experimental Study on Ultrasonic-Assisted Drilling of Inconel 718 Under Different Cooling/Lubrication Conditions(Springer London Ltd, 2024) Erturun, Omer Faruk; Tekaut, Hasan; Cicek, Adem; Ucak, Necati; Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. EnginUltrasonic-assisted drilling (UAD) is one of the efficient and innovative methods to improve the drillability of difficult-to-cut materials. In the present study, the UAD of Inconel 718 was investigated under different cooling and/or lubrication conditions. The drilling tests were carried out at a constant cutting speed (15 m/min) and a feed (0.045 mm/rev) using uncoated and TiAlN-coated solid carbide drills under dry, conventional cutting fluid (CCF), and minimum quantity lubrication (MQL) conditions. The applicability of UAD to drilling Inconel 718 was evaluated in terms of thrust force, surface roughness, roundness error, burr formation, subsurface microstructure and microhardness, tool wear, and chip morphology. The test results showed that, when compared to conventional drilling (CD), UAD reduced the thrust force and improved the hole quality, tool life, and surface integrity under all conditions. Good surface finish, lower roundness error, and minimum burr heights were achieved under CCF conditions. MQL drilling provided lower thrust forces, better tool performance, and good subsurface quality characteristics. In addition, the simultaneous application of CCF-UAD and MQD-UAD showed significantly better performance, especially when using the coated tool.Article Citation - Scopus: 1Feasibility Study of Chatter Suppression in Milling Through Internal Channels(Springer London Ltd, 2025) Dogan, Hakan; Ozsoy, Muhammet; Namlu, Ramazan HakkiMilling chatter significantly affects machining productivity, and methods to eliminate chatter caused by milling cutter dynamics are limited due to space constraints and the rotation of the milling cutter. This study investigates the impact of fluid-induced damping effect on chatter stability in milling operations and proposes it as an easy to implement and effective method to improve chatter stability caused by a cutter's vibration mode. The approach utilises a viscous fluid, silicone oil, filled into internal coolant channel of the cutting tool to improve stability by increasing the damping. Both modal and milling tests were conducted for the tool with and without silicone oil. The results show that stability can be significantly increased by this method presenting it as a viable chatter suppression technique. The results show a significant improvement in stability by presenting the method as a practical and cost-effective chatter suppression solution. Its ease of implementation makes it attractive for industrial use.
