5 results
Search Results
Now showing 1 - 5 of 5
Article Citation - WoS: 2Citation - Scopus: 2Optical Characterization of Nabi(moo4)2< Crystal by Spectroscopic Ellipsometry(Springer Heidelberg, 2024) Guler, I.; Isik, M.; Gasanly, N. M.The compound NaBi(MoO4)(2) has garnered significant interest in optoelectronic fields. This study employs spectroscopic ellipsometry to thoroughly examine the linear and nonlinear optical characteristics of NaBi(MoO4)(2) crystals, offering detailed insights into their optical behavior. Our investigation presents a precise method for discerning the crystal's spectral features, revealing the spectral variations of key optical parameters such as refractive index, extinction coefficient, dielectric function, and absorption coefficient within the 1.2-5.0 eV range. Through analysis, we determined optical attributes including bandgap energy, critical point energy, and single oscillator parameters. Additionally, we explored the nonlinear optical properties of NaBi(MoO4)(2), unveiling potential applications such as optoelectronic devices, frequency conversion, and optical sensors. This study enhances comprehension of optical properties of NaBi(MoO4)(2), underscoring its significance in future optical and electronic advancements.Article Citation - WoS: 19Citation - Scopus: 19A Study on the Dark and Illuminated Operation of Al/Si3< Schottky Photodiodes: Optoelectronic Insights(Springer Heidelberg, 2024) Surucu, Ozge; Yildiz, Dilber Esra; Yildirim, MuratThis work extensively investigates the operation of an Al/ Si3N4/p-Si Schottky-type photodiode under dark and varying illumination intensities. The photodiode is fabricated by employing the metal-organic chemical vapor deposition (MOCVD) method. A thorough electrical characterization is performed at room temperature, encompassing measurements of current-voltage (I-V), current-time (I-t), capacitance-time (C-t), and conductance time (G-t). The photodiode's rectification factor and reverse bias area increased under illumination. The relationship between light power density, barrier height, and diode ideality factor is found. The study also found a strong correlation between light intensity and applied voltage on series resistance (R-s) and shunt resistance (R-sh). R-s values are calculated using Cheung's functions, revealing the diode's resistance behavior. The study also examines the photodiode's photoconductivity and photoconductance, finding a non-linear relationship between photocurrent and illumination intensity, suggesting bimolecular recombination. Calculated photosensitivity (K), responsivity (R), and detectivity (D*) values show the device's light response effectiveness, but efficiency decreases at higher illumination intensities. Transient experiments indicate stable and reproducible photocurrent characteristics, revealing photogenerated charge temporal evolution. This study provides a complete understanding of the Al/Si3N4/p-Si Schottky photodiode's behavior under different illumination intensities. The findings advance optoelectronic device knowledge and enable their use in advanced technologies.Article Citation - WoS: 9Citation - Scopus: 10Influence of Cement Replacement by Calcinated Kaolinitic and Montmorillonite Clays on the Properties of Mortars(Springer Heidelberg, 2023) Al-Noaimat, Yazeed A. A.; Akis, TolgaThis study aims to investigate the decomposition and pozzolanic reactivity of two different clays (kaolinitic and montmorillonite) from different origins and to determine their effects after calcination on the properties of cement mortars when used to replace Portland cement partially. Mineralogical and chemical compositions of the clay samples were determined using XRD (X-ray Diffractometer) and XRF (X-ray Fluorescence) tests, respectively. TG-DTA (Thermogravimetry-Differential Thermal Analyses) was used to determine the temperature profiles and the burning temperatures of the clays. The density and fineness of the burnt clays were also determined. In order to investigate the optimum material properties, different burning temperatures and replacement levels were considered. It was found that for all temperatures, the two burnt clays possess good pozzolanic activity. The highest compressive strength and lowest water absorption capacity were achieved when the clay determined as kaolinitic was burned at 700 & DEG;C and with 10% replacement level. While for the clay determined as montmorillonite, the optimum properties were obtained at 700 & DEG;C with a 20% substitution level. Kaolinite had better pozzolanic reactivity than montmorillonite, achieving higher strength performance with lower water absorption when partially replaced with cement. Moreover, it had compressive strength values even higher than plain cement.Article Citation - WoS: 6Citation - Scopus: 6Consistency of Spatiotemporal Variability of Modis and Era5-Land Surface Warming Trends Over Complex Topography(Springer Heidelberg, 2023) Yilmaz, MericIn this study, the trend of widely used MODIS MxD11 and MxD21 Land Surface Temperature (LST) and ERA5-Land Skin Temperature (SKT) and 2 m air temperature products were validated using 2 m air temperature trends obtained by ground observations from 266 stations in 2000-2021 over Turkey, known to have complex topography. The results show that colder regions have substantially higher temporal temperature variability than warmer ones. MxD21 and MxD11 products are 4.4 & DEG;C and 2.9 & DEG;C warmer than ERA5-Land products, respectively, while ERA5-Land products (SKT and 2 m) have nearly similar averages (12.5 & DEG;C). The consistency between MODIS and ERA5-Land data is significantly lower over areas with more complex topography and irrigation activities, despite the fact that the products show a high linear relationship over the study area. While February trends are consistently much higher than other months (2.2 and 1.4 & DEG;C/decade for MODIS and ERA5-Land, respectively), overall MODIS skin temperature products (0.7 & DEG;C/decade) generally exhibit smaller trends than ERA5-Land skin and air temperature trends (0.94 & DEG;C/decade). The results suggested that MODIS and ERA5-Land trends, which are highly consistent with observations, might replace observations in the absence of long-term station-based records.Article Citation - WoS: 1Citation - Scopus: 1Re-Examining the Real Interest Rate Parity Hypothesis Under Temporary Gradual Breaks and Nonlinear Convergence(Springer Heidelberg, 2023) Hasanov, Mubariz; Omay, Tolga; Abioglu, VasifThis paper investigates the real interest parity hypothesis by testing stationarity of real interest rate differentials for 52 countries with respect to the USA. Taking account of the fact that both asymmetric adjustment and gradual temporary breaks may better characterize the dynamics of real interest rate differentials, we propose a new test that allows for two temporary shifts together with asymmetric adjustment towards the equilibrium. We employ the newly proposed test procedure along with the conventional ADF test as well as nonlinear KSS and OSH tests to examine stationarity of real interest rate differentials. Among the main results, we find that the newly proposed unit root test procedure highly outperforms the existing unit root tests in terms of rejecting the null hypothesis of unit root. Our results suggest that real interest rate differentials can be characterized by a stationary process with asymmetric adjustment around gradual and temporary shifts of mean.
