Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    On Some Permutation Trinomials in Characteristic Three
    (Hacettepe Univ, Fac Sci, 2025) Temür, Burcu Gülmez; Özkaya, Buket
    In this paper, we determine the permutation properties of the polynomial x3 +xq+2 −x4q−1 over the finite field Fq2 in characteristic three. Moreover, we consider the trinomials of the form x4q−1 + x2q+1 ± x3. In particular, we first show that x3 + xq+2 − x4q−1 permutes Fq2 with q = 3m if and only if m is odd. This enables us to show that the sufficient condition in [34, Theorem 4] is also necessary. Next, we prove that x4q−1 + x2q+1 − x3 permutes Fq2 with q = 3m if and only if m ̸≡ 0 (mod 4). Consequently, we prove that the sufficient condition in [20, Theorem 3.2] is also necessary. Finally, we investigate the trinomial x4q−1 + x2q+1 + x3 and show that it is never a permutation polynomial of Fq2 in any characteristic. All the polynomials considered in this work are not quasi-multiplicative equivalent to any known class of permutation trinomials.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 2
    Asymptotic Equivalence of Impulsive Dynamic Equations on Time Scales
    (Hacettepe Univ, Fac Sci, 2023) Akgol, Sibel Dogru
    The asymptotic equivalence of linear and quasilinear impulsive dynamic equations on time scales, as well as two types of linear equations, are proven under mild conditions. To establish the asymptotic equivalence of two impulsive dynamic equations a method has been developed that does not require restrictive conditions, such as the boundedness of the solutions. Not only the time scale extensions of former results have been obtained, but also improved for impulsive differential equations defined on the real line. Some illustrative examples are also provided, including an application to a generalized Duffing equation.