33 results
Search Results
Now showing 1 - 10 of 33
Article Citation - WoS: 22Citation - Scopus: 25Effect of Solution Heat Treatment on the Microstructure and Crystallographic Texture of In939 Fabricated by Powder Bed Fusion-Laser Beam(Elsevier, 2023) Dogu, Merve Nur; Ozer, Seren; Yalcin, Mustafa Alp; Davut, Kemal; Bilgin, Guney Mert; Obeidi, Muhannad Ahmed; Brabazon, DermotThe effect of various solution heat treatment temperatures (i.e., 1120, 1160, 1200 and 1240 & DEG;C) on the microstructure, grain morphology and crystallographic texture of IN939 fabricated by powder bed fusion-laser beam (PBF-LB) was investigated. Microstructural analyses showed that the high-temperature gradient and rapid solidification of the PBF-LB processing caused different resulting microstructures compared to conventionally pro-duced counterparts. The melt pool morphologies and laser scanning paths were examined in the as-fabricated samples in the XZ-and XY-planes, respectively. After the application of solution heat treatment at 1120 & DEG;C, the as-fabricated PBF-LB initial microstructure was still apparent. For solution heat treatments of 1200 & DEG;C and above, the melt pool and scanning path morphologies disappeared and converted into a mixture of columnar grains in the XZ-plane and equiaxed grains in the XY-plane. On the other hand, large equiaxed grains were observed when the samples were solutionized at 1240 & DEG;C. Additionally, g' phase precipitated within the matrix after all solution heat treatment conditions, which led to increase in the microhardness values. According to electron backscatter diffraction (EBSD) analyses, both as-fabricated and solution heat-treated samples had intense texture with {001} plane normal parallel to the building direction. The first recrystallized grains began to appear when the samples were subjected to the solution heat treatment at 1160 & DEG;C and the fraction of the recrystallized grains increased with increasing temperature, as supported by kernel average misorientation (KAM) and grain spread orientation (GOS) analyses.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Article Citation - WoS: 25Citation - Scopus: 25A Model for the Prediction of Thermal Runaway in Lithium-Ion Batteries(Elsevier, 2024) Azuaje-Berbeci, Bernardo J.; Ertan, H. BulentThe increasing popularity of electric vehicles is driving research into lithium -ion batteries (LIBs). Thermal runaway (TR) in LIBs is a serious concern for the safe operation of these high-energy-density batteries that is yet to be overcome. A reliable model is needed to predict voltage variation, heat generation, temperature rise, and the process leading to TR of a LIB battery under its operating conditions (charging-discharging). Such a model can be used to design battery packs more resilient to thermal runaway or assess how a battery pack would perform under hazardous conditions. Furthermore, it can be used for generating a warning signal if there is a possibility of the battery going towards TR. This paper presents an approach to solving this problem, which is not currently well addressed in the literature. The approach adopted in this paper is based on a numerical analysis of a multilayered electrochemical-thermal model of LIB. Tuning the parameters of a LIB for accurate results from this numerical model is presented, as well as the details of the approach in the paper. Experiments are performed under several LIBs, and their voltage and surface temperature variations are measured under various operating conditions, including thermal runaway. The results of the experiments are compared with the predictions of the numerical simulations. An excellent agreement is observed with the experimental results, proving the accuracy of the proposed approach. This approach can be configured to give results in a few minutes. The paper also discusses how the developed approach can be used to create a TR warning during operating conditions or to change the mode of operation of a LIB before a hazard occurs.Article Citation - WoS: 30Citation - Scopus: 39A Transformative Solution for Construction Safety: Blockchain-Based System for Accident Information Management(Elsevier, 2023) Ahmadisheykhsarmast, Salar; Aminbakhsh, Saman; Sonmez, Rifat; Uysal, FurkanEffective management of accident information is a crucial component of safety management within the construction industry, as it reflects the safety performance of the company and allows them to identify the root causes of accidents and prevent similar accidents in the future. However, existing safety information systems provide self-owned, isolated, and centralized environments and fail to present a secure, transparent, and trustworthy platform for monitoring and management of accident information. To address these issues, this paper presents a novel decentralized blockchain-based system for accident/incident information management of construction projects. The proposed system leverages the benefits and advantages of blockchain, smart contracts, and decentralized IPFS storage to address the security transparency, tampering, and trustworthiness issues of the conventional approaches. The proposed system is simulated by using real-world construction accident data to demonstrate how blockchain technology can provide a novel solution to assure security, transparency, authenticity, availability, and immutability of the accident/incident data for improving safety management.Article Citation - WoS: 5Citation - Scopus: 5Identification of Shallow Trap Centers in Inse Single Crystals and Investigation of Their Distribution: a Thermally Stimulated Current Spectroscopy(Elsevier, 2024) Isik, M.; Gasanly, N. M.Identification of trap centers in semiconductors takes great importance for improving the performance of electronic and optoelectronic devices. In the present study, we employed the thermally stimulated current (TSC) method within a temperature range of 10-280 K to explore trap centers in InSe crystal-a material with promising applications in next-generation devices. Our findings revealed the existence of two distinct hole trap centers within the InSe crystal lattice located at 0.06 and 0.14 eV. Through the leveraging the T-stop method, we offered trap distribution parameters of revealed centers. The results obtained from the experimental methodology employed to investigate the distribution of trap centers indicated that one of the peaks extended between 0.06 and 0.13 eV, while the other spanned from 0.14 to 0.31 eV. Notably, our research uncovers a remarkable variation in trap density, spanning one order of magnitude, for every 10 and 88 meV of energy variation. The results of our research present the characteristics of shallow trap centers in InSe, providing important information for the design and optimization of InSe-based optoelectronic devices.Article The Impact of Quaternization Degree in Polyepichlorohydrin-Based Anion Exchange Membranes on Salinity Gradient Energy Generation by Reverse Electrodialysis(Elsevier, 2025) Cihanoglu, Aydin; Guler, Enver; Kabay, NalanAnion exchange membranes with tailored fixed-charge densities can improve monovalent ion selectivity and performance in reverse electrodialysis for salinity gradient power generation. In this study, poly(epichlorohydrin) was blended with polyacrylonitrile and quaternized with 1,4-diazabicyclo[2.2.2]octane at three different molar ratios to produce AEMs with systematically varied quaternization degrees via a one-step amination/ crosslinking procedure. The resulting membranes were characterized for their physicochemical, electrochemical, and RED performance using ATR-FTIR, XPS, SEM, AFM, water uptake, swelling degree, contact angle, surface zeta potential, ion exchange capacity, fixed charge density, and electrical resistance. Higher quaternization increased the IEC, reduced resistance, and shifted surface charge, leading to improved stack power output in model NaCl solutions. In the presence of Na2SO4, power loss was reduced for more highly quaternized membranes, indicating enhanced exclusion of divalent anions (SO42-) and reduced uphill transport. Fouling tests with humic acid/fulvic acid mixtures showed greater stability for quaternized membranes compared to a commercial benchmark. Moreover, stability tests conducted on fouled membranes revealed that the tailor-made membrane exhibits superior durability and lower fouling-induced power loss than commercial Fujifilm Type II AEMs. Overall, these results demonstrate that tuning the degree of quaternization is an effective strategy to balance conductivity and ion selectivity in AEMs for RED applications.Review Citation - WoS: 4Citation - Scopus: 4Smart Hydrogels in Lab-On (loc) Applications(Elsevier, 2024) Tevlek, Atakan; Cretin, Esin AkbayLaboratory on-chip (LOC) technology facilitates numerous developments across diverse disciplines, such as medicine, tissue engineering, materials science, biomedical engineering, and biotechnology. Moreover, the potential applications appear boundless when LOC is integrated with intelligent hydrogels. In the literature, however, there are few accounts of the vast array of developments and applications that this combination has spawned. These new systems, which integrate smart hydrogels and LOC and thus significantly advance cuttingedge technology, have been thoroughly examined in this review. The functions of smart hydrogels in LOC applications were described and subsequently the developed intelligent hydrogels were classified as multiresponsive, thermo-responsive, pH-responsive, and stimuli-responsive (light, magnetic, and electric). Following this, details regarding tunable properties for LOC functions were provided, followed by a discussion of the fabrication processes and integration of these intelligent hydrogels into LOC systems, including their benefits and drawbacks. Following that, current literature examples of LOC systems utilizing these intelligent hydrogels for biosensing, 3D culture, tissue engineering, controlled release, personalized medicine, drug delivery, analyte enrichment, and organ-on-a-chip applications were presented. Following the presentation of state-of-the-art information regarding smart hydrogel characterization techniques, present challenges and prospective prospects were discussed.Article Sustainable Stabilization of Expansive Soils Using Waste Marble Powder and Expanded Polystyrene Beads: Experimental Evaluation and Predictive Modelling(Elsevier, 2026) Akis, Ebru; Citak, Mete; Lotfi, BahramExpansive soils exhibit considerable volume changes with moisture fluctuations leading to serious challenges for civil infrastructure, causing structural instability, pavement distortion, and foundation damage. While lime and cement remain widely used stabilizers, recent research has increasingly focused on waste-derived materials such as marble powder (MP) and expanded polystyrene beads (EPSb) as promising alternatives. These materials provide a practical approach to soil stabilization while contributing to the reuse of industrial by-products. In this study, the engineering behavior of high-plasticity clay was improved through the inclusion of MP and EPSb as additive materials. MP was added at 0%, 5%, 10%, 15%, and 20%, and EPSb at 0%, 0.3%, and 0.9% by dry weight of the high plasticity clay. Both additives were used alone and in combination. Laboratory tests, including Standard Proctor, free swell (FS), and unconfined compressive strength (UCS), were conducted. The results confirmed that the additives effectively reduced the liquid limit (LL) by 20.1% and the plasticity index (PI) by up to 22.4%. Results showed that EPSb effectively reduced FS and UCS, while MP decreased FS and increased UCS up to an optimal content. The most effective mixes achieved a maximum reduction of 54.7% in free swell (FS) (at 20% MP and 0.9% EPSb content) and a maximum increase of 13.1% in unconfined compressive strength (UCS) (at 5% MP content) compared to the untreated soil. The compaction tests further revealed a general decrease in optimum moisture content (OMC) and a slight increase in maximum dry density (MDD) with increasing MP content. Accordingly, the free swell (FS) and unconfined compressive strength (UCS) of the treated soils were predicted using multiple linear regression (MLR) and artificial neural network (ANN) models, developed from both the current experimental dataset and previously published studies. Input variables included untreated FS and UCS values, additive percentages, and one index property. The ANN model demonstrated superior predictive capability, achieving R2 values of 0.955 and 0.874 for FS and UCS, respectively, compared to 0.411 and 0.618 obtained with MLR. These results highlight the robustness of ANN in capturing nonlinear soil behavior and underscore its reliability and accuracy, particularly under limited data conditions.Article Citation - WoS: 4Citation - Scopus: 4Molecular/Antigenic Mimicry and Immunological Cross-Reactivity Explains Sars-Cov Autoimmunity(Elsevier, 2025) Adiguzel, Yekbun; Bogdanos, Dimitros P.; Shoenfeld, YehudaCOVID-19 pandemic is over, but its effects on chronic illnesses remain a challenging issue. Understanding the influence of SARS-COV-2-mediated autoimmunity and overt autoimmune disease is of paramount importance, as it can provide a critical mass of information regarding both infection-mediated (and vaccination-induced) autoimmune phenomena in susceptible individuals during the disease course, and short or long-term post-disease sequelae. The high prevalence of organ and non-organ specific autoantibody positivity in patients with COVID-19 led to studies attempting to delineate the origin and the underlying mechanism responsible for their induction nature, identifying novel autoantigens, and the self-epitope sequences which could be the impetus for the initiating autoreactive responses. Herein, we provide a meticulous review of the studies reporting those mimicking sequences that have been experimentally validated, based on the assumption that molecular mimicry and immunological crossreactivity may account for autoantibody development. Most reports are based on bioinformatics approaches, and only a disproportionally small number of studies currently demonstrate immunological crossreactivity. We took the opportunity to further review and searched for the linear human epitope sequences of human, through the epitopes deposited at the Immune Epitope Database. This included an analysis of autoimmune disease as the disease data to comprehensively understand the subject matter. The critical overview of the findings underscore the urgent and immense need for further research to gain a comprehensive understanding of the mechanisms involved and the anticipated appraisal that molecular mimicry and immunological crossreactivity is indeed central to the loss of immunological tolerance during SARS-COV-2 infection.Article Comparison Between Gas Phase and Electrochemical Nitridation of 8ysz Under Nitrogen Atmosphere To Produce Nitride Conducting Solid Electrolytes(Elsevier, 2024) Ozturk, Onur; Dogu, DorukAmmonia is one of the most used chemicals in the world. It is commonly synthesized by the Haber-Bosch process which requires high temperature (450-500 degrees C) and pressure (up to 300 bar). This process is thermodynamically limited and causes environmental problems due to CO2 emissions caused by the production of H2 required by this process from fossil fuels. Electrocatalytic processes using oxide and proton-conducting electrolytes are gaining interest for ammonia production to overcome these limitations. Although both methods overcome many of the problems associated with the Haber-Bosch process, due to strong N-N triple bonds selectivity towards ammonia decreases. This is because the reaction occurs on the same side of the membrane electrode assembly, namely the cathode electrode, where nitrogen is fed in the gas phase and nitrogen bonds should be broken to react with hydrogen ions readily available on the electrolyte surface. Since N-N bond cleavage requires very high energy, hydrogen ions generally recombine to form H2 before the nitrogen can be ionized. Nitride conducting electrolytes can be an answer to this problem because in their use nitrogen ionization and ammonia synthesis reactions occur at different electrodes and nitrogen is fed to the reaction site in the ionic form which is more active for the reaction. This study focuses on two alternative methods for the production of nitride conducting solid electrolytes by nitridation of 8 % Yttria Stabilized Zirconia (8YSZ). Two different methods for nitridation were studied: gas phase powder nitridation and electrochemical nitridation of YSZ electrolytes. This study shows that although gas phase nitridation of YSZ powders at high temperatures under nitrogen is not efficient, electrochemical nitridation of YSZ electrolytes is a highly promising method to produce nitride conducting electrolytes.Article Citation - WoS: 8Citation - Scopus: 10Space Efficiency in Timber Office Buildings(Elsevier, 2024) Aslantamer, Ozlem Nur; Ilgin, Huseyin EmreTimber offices indicate a growing field, principally thanks to their potential to offer noteworthy ecological and financial gains over their entire life. Like many other building types, space efficiency is a crucial design parameter in timber structures to ensure a project's feasibility. This factor is especially significant in office buildings, where maximizing rental income reflects effective planning. Currently, there is a lack of exhaustive inquiry providing a thorough insight of space efficiency in modern timber office buildings. This study fills this gap in the literature by collecting data from 33 buildings through literature reviews and case study method to investigate space efficiency with the key architectural and structural factors that influence it. The results showed that: (i) central cores stood out as the prevailing core layouts, while peripheral arrangements were noted as alternative preferences. Prismatic shapes emerged as the most favored options; (ii) timber was extensively used as a primary building material, closely followed by combinations of timber and concrete. Load-bearing systems mainly relied on shear walled frames and configurations; (iii) average space utilization across examined cases was 88 %, with variances ranging from 75 % to 95 % among different instances; (iv) average ratio of core area to GFA was 10 %, showing variations between 4 % and 19 % across various scenarios; and (v) there were no substantial variances noted in the effect of different core planning strategies on spatial efficiency. Similar conclusions were drawn regarding building forms and structural materials. Our paper will assist in crafting design principles customized for diverse stakeholders, including architectural designers of timber offices.
