Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    The Impact of the Limit q-durrmeyer Operator on Continuous Functions
    (Springer Heidelberg, 2024) Yilmaz, Ovgu Gurel; Ostrovska, Sofiya; Turan, Mehmet
    The limit q-Durrmeyer operator, D-infinity,D-q, was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172-178, 2008) during a study of q-analogues for the Bernstein-Durrmeyer operator. In the present work, this operator is investigated from a different perspective. More precisely, the growth estimates are derived for the entire functions comprising the range of D-infinity,D-q. The interrelation between the analytic properties of a function f and the rate of growth for D(infinity,q)f are established, and the sharpness of the obtained results are demonstrated.
  • Article
    On the Continuity in q of the Family of the Limit q-durrmeyer Operators
    (de Gruyter Poland Sp Z O O, 2024) Yilmaz, Ovgu Gurel; Ostrovska, Sofiya; Turan, Mehmet
    This study deals with the one-parameter family {D-q}(q is an element of[0,1]) of Bernstein-type operators introduced by Gupta and called the limit q-Durrmeyer operators. The continuity of this family with respect to the parameter q is examined in two most important topologies of the operator theory, namely, the strong and uniform operator topologies. It is proved that {D-q}(q is an element of[0,1]) is continuous in the strong operator topology for all q is an element of [0, 1]. When it comes to the uniform operator topology, the continuity is preserved solely at q = 0 and fails at all q is an element of (0, 1]. In addition, a few estimates for the distance between two limit q-Durrmeyer operators have been derived in the operator norm on C[0, 1].