5 results
Search Results
Now showing 1 - 5 of 5
Article Citation - WoS: 2Citation - Scopus: 2On the q-bernstein Polynomials of Piecewise Linear Functions in the Case q > 1(Pergamon-elsevier Science Ltd, 2013) Kaskaloglu, Kerem; Ostrovska, SofiyaThe aim of this paper is to present new results related to the approximation of continuous functions by their q-Bernstein polynomials in the case q > 1. The first part of the paper is devoted to the behavior of the q-Bernstein polynomials of piecewise linear functions. This study naturally leads to the notion of truncated q-Bernstein polynomials introduced in the paper. The second part deals with the asymptotic estimates for the norms of the m-truncated q-Bernstein polynomials, in the case where both n and q vary. The results of the paper are illustrated by numerical examples. (C) 2012 Elsevier Ltd. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 10The Norm Estimates for The q-bernstein Operator in The Case q > 1(Amer Mathematical Soc, 2010) Wang, Heping; Ostrovska, SofiyaThe q-Bernstein basis with 0 < q < 1 emerges as an extension of the Bernstein basis corresponding to a stochastic process generalizing Bernoulli trials forming a totally positive system on [0, 1]. In the case q > 1, the behavior of the q-Bernstein basic polynomials on [0, 1] combines the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present norm estimates in C[0, 1] for the q-Bernstein basic polynomials and the q-Bernstein operator B-n,B-q in the case q > 1. While for 0 < q <= 1, parallel to B-n,B-q parallel to = 1 for all n is an element of N, in the case q > 1, the norm parallel to B-n,B-q parallel to increases rather rapidly as n -> infinity. We prove here that parallel to B-n,B-q parallel to similar to C(q)q(n(n-1)/2)/n, n -> infinity with C-q = 2 (q(-2); q(-2))(infinity)/e. Such a fast growth of norms provides an explanation for the unpredictable behavior of q-Bernstein polynomials (q > 1) with respect to convergence.Article Citation - WoS: 9Citation - Scopus: 8On the Eigenvectors of the q-bernstein Operators(Wiley, 2014) Ostrovska, S.; Turan, M.In this article, both the eigenvectors and the eigenvalues of the q-Bernstein operators have been studied. Explicit formulae are presented for the eigenvectors, whose limit behavior is determined both in the case 01. Because the classical case, where q=1, was investigated exhaustively by S. Cooper and S. Waldron back in 2000, the present article also discusses the related similarities and distinctions with the results in the classical case. Copyright (c) 2013 John Wiley & Sons, Ltd.Article On the Continuity in q of the Family of the Limit q-durrmeyer Operators(de Gruyter Poland Sp Z O O, 2024) Yilmaz, Ovgu Gurel; Ostrovska, Sofiya; Turan, MehmetThis study deals with the one-parameter family {D-q}(q is an element of[0,1]) of Bernstein-type operators introduced by Gupta and called the limit q-Durrmeyer operators. The continuity of this family with respect to the parameter q is examined in two most important topologies of the operator theory, namely, the strong and uniform operator topologies. It is proved that {D-q}(q is an element of[0,1]) is continuous in the strong operator topology for all q is an element of [0, 1]. When it comes to the uniform operator topology, the continuity is preserved solely at q = 0 and fails at all q is an element of (0, 1]. In addition, a few estimates for the distance between two limit q-Durrmeyer operators have been derived in the operator norm on C[0, 1].Article Citation - WoS: 5Citation - Scopus: 6The Norm Estimates of the q-bernstein Operators for Varying q > 1(Pergamon-elsevier Science Ltd, 2011) Ostrovska, Sofiya; Ozban, Ahmet YasarThe aim of this paper is to present norm estimates in C [0, 1] for the q-Bernstein basic polynomials and the q-Bernstein operators B-n,B-q in the case q > 1. While for 0 < q <= 1, vertical bar vertical bar B-n,B-q vertical bar vertical bar = 1 for all n is an element of N. in the case q > 1, the norm vertical bar vertical bar B-n,B-q vertical bar vertical bar increases rather rapidly as q -> +infinity. In this study, it is proved that vertical bar vertical bar B-n,B-q vertical bar vertical bar similar to C(n)q(n(n-1)/2), q -> +infinity with C-n = 2/n (1- 1/n)(n-1). Moreover, it is shown that vertical bar vertical bar B-n,B-q vertical bar vertical bar similar to 2q(n(n-1)/2) /ne as n -> infinity, q -> +infinity. The results of the paper are illustrated by numerical examples. (C) 2011 Elsevier Ltd. All rights reserved.

