2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 46Citation - Scopus: 49Recrystallization and Grain Growth Kinetics of In718 Manufactured by Laser Powder Bed Fusion(Elsevier, 2022) Dogu, Merve Nur; Davut, Kemal; Obeidi, Muhannad Ahmed; Yalcin, Mustafa Alp; Gu, Hengfeng; Low, Thaddeus Song En; Brabazon, DermotThe recrystallization and grain growth behaviour of IN718 alloy additively manufactured by laser powder bed fusion (L-PBF) is presented herein. The effects of three different temperatures (1050, 1150 and 1250 degrees C) and holding times (15, 45 and 90 min) were investigated. The texture evolution of the samples was recorded via electron backscatter diffraction (EBSD). The as-built sample is composed of bowl-shaped melt pools, a chessboard-like grain pattern and has a cube texture {100}<001>. Recrystallized grains were observed in the samples treated at 1150 degrees C for 15 min, as well as the samples treated for longer periods and at higher temperatures. Recrystallization was observed to start from high dislocation density regions, including the overlapping melt pools and the borders of the chessboard-like pattern. The initial cube texture transforms into a first-generation cube-twin texture {122}<212> via a twinning-assisted recrystallization mechanism. Then, those recrystallization nuclei sweep through the high defect density matrix; during which almost no new twins are formed. The samples treated at 1250 degrees C are almost completely recrystallized, which forms a weaker cube texture and a stronger P-orientation {011}<112>. However, the growth of recrystallized grains is very limited due to the presence of non-coherent precipitates. (C) 2022 The Author(s). Published by Elsevier B.V.Article Citation - WoS: 39Citation - Scopus: 42Effect of Post Fabrication Aging Treatment on the Microstructure, Crystallographic Texture and Elevated Temperature Mechanical Properties of In718 Alloy Fabricated by Selective Laser Melting(Elsevier Science Sa, 2022) Ozer, Seren; Bilgin, Guney Mert; Davut, Kemal; Esen, Ziya; Dericioglu, Arcan F.The effect of building direction and post fabrication aging treatment on the microstructure, crystallographic texture and high temperature mechanical properties of Inconel 718 (IN718) alloy fabricated by selective laser melting (SLM) method was investigated. After aging, arc-shaped structures seen in as-fabricated samples dis-appeared and converted into a mixture of columnar and equiaxed grains. Nano-sized gamma '' and/or gamma' precipitates were formed upon aging; however, MC type carbides and Laves phase encountered in as-fabricated samples were not dissolved completely after aging. Moreover, aging did not alter the texture ((001)//building direction (BD)) of as-fabricated samples. Mechanical properties of the alloys under tension were influenced by the build direction, aging time and test temperature. As-fabricated samples produced in vertical direction exhibited higher room temperature strengths with lower ductility due to orientation of overlapped prior melt pools. Room temperature tensile test results revealed that peak aging caused a significant improvement in ultimate tensile strength (UTS), from 1066.5 MPa and 998.4 MPa to 1408.5 MPa and 1330.4 MPa whereas elongation values decreased from 27.5% and 32.2% to 19.6% and 23.7% in vertically and horizontally built samples, respectively. Peak-aged samples (aged at 700 degrees C for 8 h) tested at 600 degrees C displayed serrated regions in their stress-strain curves due to dynamic strain aging (DSA). Although strength values of the samples displayed an expected decrease by temperature, ductility of the samples reduced to minimum at temperatures around 700-800 degrees C, which was attributed to intermediate temperature embrittlement.

