2 results
Search Results
Now showing 1 - 2 of 2
Review Citation - WoS: 65Citation - Scopus: 73Micro Tool Design and Fabrication: a Review(Elsevier Sci Ltd, 2018) Oliaei, S. N. B.; Karpat, Y.; Paulo Davim, J.; Perveen, A.Mechanical micromachining is considered as a cost-effective and efficient fabrication technique to produce three dimensional features and free-form surfaces from various engineering materials. Micro cutting tools are an essential part of mechanical micromachining and they are exposed to harsh conditions which reduces tool life and adversely affect the economics of the process. The challenge is therefore to maintain the tool rigidity and cutting edge sharpness for extended period of time. Thus, the design, fabrication and durability of micro cutting tools are of significant importance for successful micromachining operations. This review paper aims to provide a comprehensive understanding about the capabilities, characteristics, and limitations of different fabrication techniques used in the manufacturing of micro cutting tools. State-of-the-art micro cutting tool design and coating technology has been presented for various micromachining applications. Possible future research direction and development in the field of micro tool design and fabrication has also been discussed.Article Citation - WoS: 6Citation - Scopus: 6Characterization of the A1/Ge/In2Se3/Ga2S3/Al hybrid tunneling barriers designed for Gigahertz/Terahertz applications(Elsevier Science Sa, 2018) Qasrawi, A. F.; Omareya, Olfat A.In the current work, we report the design and performance of a tunneling amorphous thin film hybrid device made of Ge/In2Se3/Ga2S3 sandwiched between two aluminum thin films. Each of the stacked semiconducting layers are of 200 nm thicknesses. The hybrid device which is composed of a p-n junction between two Schottky shoulders is designed to have two valence band offsets of 0.59 and 0.84 eV at the Ge/In2Se3 and at In2Se3/Ga2S3 interfaces, respectively The offsets which caused two quantum confinements forces the device to exhibit field effect assisted thermionic and thermionic transport mechanisms under the reverse and forward biasing conditions, respectively. When an alternating current signal is imposed between the terminals of the device, the device conducted by the quantum mechanical tunneling of charge carriers and by the correlated barrier hopping above and below 0.180 GHz, respectively. The hybrid structure are also observed to exhibit series and parallel resonance at the switching frequency between the two conduction mechanisms. It also exhibited negative differential capacitance effect in the frequency domain of 0.18-1.80 GHz. For the Al/Ge/In(2)Se3/Ga2S3/Al hybrid structure the microwave cutoff frequency reached 100 GHz. The latter value is promising as it indicates the ability of using the device as fast switches and microwave/Tera wave traps.

