2 results
Search Results
Now showing 1 - 2 of 2
Book Part Citation - Scopus: 6Cannabinoids as Prospective Anti-Cancer Drugs: Mechanism of Action in Healthy and Cancer Cells(Springer, 2023) Boyacıoğlu,Ö.; Korkusuz,P.Endogenous and exogenous cannabinoids modulate many physiological and pathological processes by binding classical cannabinoid receptors 1 (CB1) or 2 (CB2) or non-cannabinoid receptors. Cannabinoids are known to exert antiproliferative, apoptotic, anti-migratory and anti-invasive effect on cancer cells by inducing or inhibiting various signaling cascades. In this chapter, we specifically emphasize the latest research works about the alterations in endocannabinoid system (ECS) components in malignancies and cancer cell proliferation, migration, invasion, angiogenesis, autophagy, and death by cannabinoid administration, emphasizing their mechanism of action, and give a future perspective for clinical use. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.Article Citation - WoS: 4Citation - Scopus: 4Anticancer Investigation of Platinum and Copper-Based Complexes Containing Quinoxaline Ligands(Elsevier, 2022) El-Beshti, Hager Sadek; Yildizhan, Yasemin; Kayi, Hakan; Cetin, Yuksel; Adiguzel, Zelal; Gungor-Topcu, Gamze; Ozalp-Yaman, SenizThis research focuses on synthesis and anticancer activity of trans-[(dichloro)bisdipyridlquinoxalino] and [(dichloro)bisdithienylquinoxalino]copper(II)/platinum(II) compounds as prodrug candidates. The binding interaction of these compounds with calf thymus DNA (CT-DNA) and human serum albumin (HSA) of the complexes were assessed with UV titration, thermal decomposition, viscometric, and fluorometric measurements. The nature of the binding of the complexes on DNA were revealed as electrostatic interaction between the cationic metal complexes ion and the negative phosphate groups of CT-DNA upon removal of the counter ion, chloride. In addition, our complexes induced a surface contact through the hydrophobic region of protein. Antitumor activity of the complexes against human glioblastoma A172, LN229, and U87 cell lines and human lung A549, human breast MDA-231, human cervix HeLa, and human prostate PC-3 cell lines were investigated by examining cell viability, oxidative stress, apoptosis, and migration/invasion. Cytotoxicity of the complexes was evaluated by MTT test. The U87 and HeLa cells were investigated as the cancer cells most sensitive to our complexes. The exerted cytotoxic effect of dipyridlquinoxalino and dithienylquinoxalino copper(II)/platinum(II) complexes was attributed to the formation of the reactive oxygen species in vitro. It is clearly demonstrated that trans-[(dichloro)bisdithenylquinoxalino]copper (II) (Cu(dtq)) has the highest DNA degradation potential and anticancer effect among the tested complexes by leading apoptosis. Wound healing and invasion analysis results also supported the anticancer activity of Cu(dtq). (C) 2021 Elsevier B.V. All rights reserved.

