Search Results

Now showing 1 - 2 of 2
  • Doctoral Thesis
    Derin Öğrenme ve Anlamsal Ağ Teknolojilerini Kullanarak Görüntü Açıklaması
    (2021) Sezen, Arda; Turhan, Çiğdem; Şengül, Gökhan
    Bu tezde, görüntü açıklama alanında görüntü tanımı çıkarımını içeren bilişsel görev için hibrit bir çözüm önerilmektedir. Sinir Ağları ile ilgili önceki çalışmalar çoğunlukla doğru etiketleri seçmeye ve/veya bir resmi tasvir etmek için ilgili etiketlerin sayısını artırmaya odaklandı. Ancak, bir resmi tanımlamak için bir dizi ilgili etiket oluşturmak ve bu resmi cümleler yoluyla tasvir etmek yapısal, sözdizimsel ve anlamsal olarak tamamen farklı olgulardır. Bu çalışmada spor alanındaki görüntülerin kontrollü bir ortamda doğal dil tanımlarını oluşturan bir çerçeve sunulmaktadır. Yaklaşımımız, görüntülerin cümle açıklamalarını oluşturmak için Yapay Zeka ve Ontolojilerden yararlanmaktadır. Geliştirilen çerçeve, derin öğrenme modellerinin ve ontoloji sınıflarının örneklerinden türetilen hizalı açıklama sonuçlarının yeni bir kombinasyonunu sunmaktadır.
  • Doctoral Thesis
    3 Boyutlu Vücut ve Yüz Görüntülerinden Yaş ve Cinsiyet Tahmini
    (2018) Çamalan, Seda; Şengül, Gökhan; Çamalan, Seda; Şengül, Gökhan; Çamalan, Seda; Şengül, Gökhan; Computer Engineering; Information Systems Engineering; Computer Engineering; Information Systems Engineering
    İnsanlardan elde edilen biyometrik veriler, insanlar ve çevre hakkında birçok bilgi sağlar. Bu bilgi ulaşım alanları (otobüs, vapur, demiryolu, vb), alışveriş merkezleri, kamu alanları, spor merkezleri, müzeler, süpermarketler, kütüphaneler, vb. gibi birçok alanda kullanılabilir. Birçok alanda dikkate alınan biyometrik veriler cinsiyet, ırk, boy, kilo, göz ve saç rengidir. Bu tez çalışmasında, insanların biyometrik verilerinden yaş aralığını ve cinsiyetlerini tahmin eden bir görüntü işleme tabanlı kombine sistem geliştirilmiş ve bir yazılım aracı haline getirilmiştir. Yüz görüntülerini elde etmek için standart RGB kamera kullanılırken vücut bilgilerini elde etmek için 3D kamera kullanılmaktadır. İnsanların cinsiyet ve yaşını tahmin etmek için istatistiksel örüntü tanıma algoritmaları, derin öğrenme ve yapay sinir ağı tabanlı yaklaşımlar kullanılmıştır. İstatistiki metotlar olarak, LBP ve HOG metotları, özniteliklerin elde edilmesi için yüz görüntülerine uygulanmakta, daha sonra KNN ve SVM sınıflandırıcılar, cinsiyet ve yaş tahmini için kullanılmaktadır. İnsanların yaşını tahmin etmek için yapay sinir ağı da kullanılmıştır ve istatistiksel yöntemler ile yapay sinir ağları arasındaki karşılaştırmalar yapılmıştır. Yaş aralığı tahmini için yüz görüntülerinden istatistiksel yöntemler ile en iyi doğruluk %40,1 olarak elde edilmiştir. CNN derin öğrenmelerinden elde edilen en iyi doğruluk oranı ise %59.1'dir. Yaş ve cinsiyet tahmini için 3D vücut bilgisi de kullanılmıştır. Yapay sinir ağları ile 3D vücut bilgilerinin sınıflandırılması sonucu cinsiyet tahmini başarımı oranını %99,26'ya ve yaş tahmini % 99.41'e yükseltilmiştir. Üst vücut ve alt vücut kısımlarının da insanların yaşının ve cinsiyetininin tahmini için kullanılabileceği değerlendirilmiş ve deneysel çalışmalar yapılmıştır.