Search Results

Now showing 1 - 1 of 1
  • Master Thesis
    Bilişsel Radyo Uygulamaları için Yüksek Düzey Kümülant Tabanlı Sınıflandırma
    (2023) Al-sudanı, Haıder Jalıl Sahıb; Dalveren, Yaser; Thabit, Ahmed A.
    Modern iletişim sistemleri, kablosuz teknoloji uygulamalarındaki büyük gelişme nedeniyle çok hızlı değişikliklere tanık olmuştur. Bu gelişmeler spektrumun kıtlığına ve verimsizliğine neden olmuştur. Bilişsel Radyo (BR), yüksek spektral verimliliği korumak ve spektrum kıtlığını tedavi etmek için en iyi çözümlerden biri olarak önerilmektedir. BR, kanal yetkili kullanıcısının spektrum kanalını ihtiyaçlarının dışında kaldığında yetkisiz kullanıcıya kullanabilmesi için tahsis eder. Fakat spektrum paylaşımı sinyal paraziti olmadan tamamlanmalıdır. Bu nedenle, BR, frekans spektrumunun düzgün yönetimi ve parazitten kaçınma için birçok algılama tekniğine sahiptir. Başlıca algılama teknikleri; Enerji Algılama (EA), Eşleştirilmiş Filtre Algılama (EFA) ve Özellik Tabanlı Algılama (ÖTA) olarak sınıflandırılabilir. Genel olarak algılama tekniklerinin özellikleri irdelendiğinde uygulama alnına göre her birinin avantajları ve sınırlamaları olduğu söylenebilir. Bu tezde, bir ÖTA için makine öğrenmenin kullanıldığı yeni bir yöntem önerilmiştir. Önerilen yöntemin etkinliğinin değerlendirilebilmesi için bir MATLAB ortamında benzetimler gerçekleştirilmiştir. Bu amaçla, öncelikle çeşitli gürültülü kanallarla farklı modülasyon şemaları oluşturulmuştur. Daha sonra, gürültülü kanallarındaki bozuk sinyallerden yüksek dereceli momentlerin ve kümülantların çıkarılması sağlanmıştır. Bu özellikler, sinyal ve gürültüyü ayırt etmedeki güçlerine göre seçilmiştir. Tespit sonuçları, destek vektör makine (DVM) sınıflandırıcısında kullanılarak dedektörden elde edilen tespit olasılıkları (Pd) hesaplanmıştır. En yüksek Pd değerinin, istatistiksel tespitte 3 yüksek dereceli kümülant ile elde edilebileceği gösterilmiştir. Aynı Pd değeri, işlenen veri miktarını azaltan ve detektör karmaşıklığını basitleştiren 1 yüksek dereceli kümülant ile DVM sınıflandırıcısı kullanılarak elde edilebilmektedir.