Search Results

Now showing 1 - 10 of 15
  • Article
    Citation - WoS: 33
    Citation - Scopus: 46
    Higher-Order Self-Adjoint Boundary-Value Problems on Time Scales
    (Elsevier Science Bv, 2006) Anderson, Douglas R.; Guseinov, Gusein Sh.; Hoffacker, Joan
    In this study, higher-order self-adjoint differential expressions on time scales and their associated self-adjoint boundary conditions are discussed. The symmetry property of the corresponding Green's functions is shown, together with specific formulas of Green's functions for select time scales. (c) 2005 Elsevier B.V. All rights reserved.
  • Conference Object
    On the Riemann Integration on Time Scales
    (Crc Press-taylor & Francis Group, 2004) Guseinov, GS; Kaymakçalan, B
    In this paper we introduce and investigate the concepts of Riemann's delta and nabla integrals on time scales. Main theorems of the integral calculus on time scales are proved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 2
    Existence of Solutions for Odd-Order Multi-Point Impulsive Boundary Value Problems on Time Scales
    (Walter de Gruyter Gmbh, 2022) Georgiev, Svetlin G.; Akgol, Sibel Dogru; Kus, Murat Eymen
    Using a fixed point theorem due to Schaefer, the existence of solutions for an odd-order m-point impulsive boundary value problem on time scales is obtained. The problem considered is of general form, where both the differential equation and the impulse effects are nonlinear. Illustrative examples are provided.
  • Article
    Citation - WoS: 4
    An Introduction To Complex Functions on Products of Two Time Scales
    (Taylor & Francis Ltd, 2006) Bohner, Martin; Guseinov, Gusein SH.
    In this paper, we study the concept of analyticity for complex-valued functions of a complex time scale variable, derive a time scale counter-part of the classical Cauchy-Riemann equations, introduce complex line delta and nabla integrals along time scales curves, and obtain a time scale version of the classical Cauchy integral theorem.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 12
    Further Properties of the Laplace Transform on Time Scales With Arbitrary Graininess
    (Taylor & Francis Ltd, 2013) Bohner, Martin; Guseinov, Gusein Sh; Karpuz, Basak
    In this work, we generalize several properties of the usual Laplace transform to the Laplace transform on arbitrary time scales. Among them are translation theorems, transforms of periodic functions, integration of transforms, transforms of derivatives and integrals, and asymptotic values.
  • Article
    Citation - WoS: 27
    Citation - Scopus: 39
    Properties of the Laplace transform on time scales with arbitrary graininess
    (Taylor & Francis Ltd, 2011) Bohner, Martin; Guseinov, Gusein Sh.; Karpuz, Basak
    We generalize several standard properties of the usual Laplace transform to the Laplace transform on arbitrary time scales. Some of these properties were justified earlier under certain restrictions on the graininess of the time scale. In this work, we have no restrictions on the graininess.
  • Article
    Citation - WoS: 52
    Citation - Scopus: 61
    Basics of Riemann Delta and Nabla Integration on Time Scales
    (Taylor & Francis Ltd, 2002) Guseinov, GS; Kaymakçalan, B
    In this paper we introduce and investigate the concepts of Riemann's delta and nabla integrals on time scales. Main theorems of the integral calculus on time scales are proved.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    A Normal Distribution on Time Scales With Application
    (Univ Nis, Fac Sci Math, 2022) Aksoy, Umit; Cuchta, Tom; Georgiev, Svetlin; Okur, Yeliz Yolcu
    We introduce a new normal distribution on time scales. Based on this generalized normal distribution, a Brownian motion is introduced and its quadratic variation is derived.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 2
    Asymptotic Equivalence of Impulsive Dynamic Equations on Time Scales
    (Hacettepe Univ, Fac Sci, 2023) Akgol, Sibel Dogru
    The asymptotic equivalence of linear and quasilinear impulsive dynamic equations on time scales, as well as two types of linear equations, are proven under mild conditions. To establish the asymptotic equivalence of two impulsive dynamic equations a method has been developed that does not require restrictive conditions, such as the boundedness of the solutions. Not only the time scale extensions of former results have been obtained, but also improved for impulsive differential equations defined on the real line. Some illustrative examples are also provided, including an application to a generalized Duffing equation.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    A Solution To Nonlinear Volterra Integro-Dynamic Equations Via Fixed Point Theory
    (Univ Nis, Fac Sci Math, 2019) Sevinik-Adiguzel, Rezan; Karapinar, Erdal; Erhan, Inci M.
    In this paper we discuss the existence and uniqueness of solutions of a certain type of nonlinear Volterra integro-dynamic equations on time scales. We investigate the problem in the setting of a complete b-metric space and apply a fixed point theorem with a contractive condition involving b-comparison function. We use the theorem to show the existence of a unique solution of some particular integro-dynamic equations.