2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 13Citation - Scopus: 13Analysis of Non-Isothermal Warm Deep Drawing of Dual-Phase Dp600 Steel(Springer France, 2019) Pepelnjak, T.; Kayhan, E.; Kaftanoglu, B.Improving the formability of the material is a key issue in the deep drawing process. Heating the material above its recrystallization temperature drastically increases formability, but in the case of dual phase (DP) steels, it results in a loss of their mechanical properties. To improve the drawing ratio, only the heating of the flange region in the warm temperature range up to 573K was studied on DP600 sheet steel by numerical simulation. A thermo-elastic-plastic finite element method (FEM) analysis of deep drawing at several drawing ratios was performed and compared with experimental results. During the experiments, the flange area of the blank was heated by induction heating, and the central part over the punch was cooled with spray water. Experimental results showed that limiting drawing ratio could be increased by 25.58%. The microstructure of the DP 600 steel was analyzed before and after the warm forming process. No significant changes were observed, and the high strength properties of the DP 600 steel remained intact. There was good agreement between numerical and experimental results.Article Citation - WoS: 37Citation - Scopus: 40Dynamic strain aging in DP steels at forming relevant strain rates and temperatures(Elsevier Science Sa, 2017) Bayramin, Berkay; Simsir, Caner; Efe, MertMechanical testing of dual phase (DP) steels at low strain rates (10(-3) s(-1)) have shown that they are susceptible to dynamic strain aging (DSA) between 100 degrees C-400 degrees C. During industrial forming processes at intermediate strain rates (1-10(2) s(-1)), the local temperatures may rise to the DSA range due to deformation heating which may disturb the exceptional formability of these steels. In this study, two grades of DP steel (DP590 and DP800) are tested at thermomechanical conditions relevant to forming and the effects of DSA on the formability are established. Test results show that the DSA controls the deformation between 200 degrees C-300 degrees C through serrations in the stress-strain curves of both grades. With increasing strain rates (up to 1 s(-1)) and temperatures, DSA intensifies and results in severe drops in uniform and total ductility with negative strain rate sensitivity, indicating poor formability at these conditions. A detailed analysis of the serrations coupled with dislocation density measurements by x-ray analysis suggests that the serrations can be linked to a periodic microstructural feature.

