2 results
Search Results
Now showing 1 - 2 of 2
Article How Analytic Properties of Functions Influence Their Images Under the Limit q-Stancu Operator(Springer Basel AG, 2026) Gurel, Ovgu; Ostrovska, Sofiya; Turan, MehmetIn the study of various q-versions of the Bernstein polynomials, a significant attention is paid to their limit operators. The present work focuses on the impact of the limit q-Stancu operator Sq infinity,alpha on the analytic properties of functions when 0 < q < 1 and alpha > 0. It is shown that for every f is an element of C[0, 1], the function S-q,(alpha infinity)fadmits an analytic continuation into the disk {z : z+alpha/(1-q) < 1+ alpha/(1-q)}. In addition, it is proved that the more derivatives f has at x = 1, the wider this disk becomes. Further, if f is infinitely differentiable at x = 1, then the function S-q,(alpha infinity)fis entire. Finally, some growth estimates for (S-q,(alpha infinity)f)(z) are obtained.Article On the Image of the Limit Q-Durrmeyer Operator(Academic Press Inc Elsevier Science, 2026) Ostrovska, Sofiya; Turan, MehmetThe focus of this work is on the properties of the q-Durrmeyer operators Mn,q, n E N, and M infinity,q introduced, for q E (0, 1), by V. Gupta and H. Wang. First, it is shown that, for each f E C[0, 1], the sequence {Mn,q f}nEN converges to M infinity,q f uniformly on [0, 1] with a rate not slower than Cq, fqn, which refines the previously available result by V. Gupta and H. Wang, and implies the possibility of an analytic continuation for M infinity,q f into a neighbourhood of [0, 1]. Further investigation shows that M infinity,q f admits an analytic continuation as an entire function regardless of f E C[0, 1]. Finally, the growth estimates for these functions are received and applied to describe the point spectrum of M infinity,q. The paper also addresses the significant differences between the properties of M infinity,q and the previously (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

