2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 1Citation - Scopus: 1Structural, Optical and Dielectric Performance of Molybdenum Trioxide Thin Films Sandwiched With Indium Sheets(inst Materials Physics, 2020) Abusaa, M.; Qasrawi, A. F.; Kmail, H. K.; Khanfar, H. K.; Department of Electrical & Electronics EngineeringIn this work, we report the enhancements in the structural, optical and dielectric properties of molybdenum trioxide that are achieved by insertion of 50 and 100 nm thick indium sheets between layers of MoO3. The films which are coated onto ultrasonically glass substrates under a vacuum pressure of 10 -5 mbar exhibited metal induced crystallization process upon insertion of indium sheets. Optically, indium sheets tuned the transmittance and reflectance, significantly, increased the absorption coefficient values and formed interbands in the band gap of MoO3. The energy band gap decreased with increasing indium sheets thickness. On the other hand, the insertion of indium layers into the structure of MoO3 is observed to improve the dielectric response of these films to values that nominate them for used in thin film transistor technology. In the same context, the analyses of the optical conductivity which are carried out with the help of Drude-Lorentz approach have shown that the presence of indium sheets can increase the optical conductivity and enhance the plasmon frequency and free charge carrier density of MoO3. The plasmon frequency is tuned in the range of 1.68-7.16 GHz making MoO3 films attractive for plasmonic applications.Article Citation - WoS: 1Citation - Scopus: 1Characterization of T1ins1.8se0.2 as Advanced Functional Crystals(Elsevier Sci Ltd, 2018) Qasrawi, A. F.; Atatreh, Areen A. M.; Gasanly, N. M.In this work, selenium doped TlInS1.8Se0.2 crystals are used to fabricate multifunctional devices that can handle more than one duty at a time. After revealing the morphological, compositional, structural and optical properties of the doped crystal, it is sandwiched between Ag and carbon metals. The crystals are characterized by means of ultraviolet-visible light spectrophotometry, impedance spectroscopy and illumination dependent current-voltage characteristics techniques. While the optical spectroscopy allowed determining the energy band gap of the crystals as well as the optical conductivity in the terahertz frequency domain, the impedance spectroscopy allowed identifying the conductance and reflectance spectra in the gigahertz frequency domain. The two techniques reveal promising characteristics presented by optical switching at 2.20 eV and band pass filtering properties in mega/gigahertz frequency domains. On the other hand, the analysis of the current (I)- voltage (V) characteristics which are recorded in the dark and under photoexcitation of unfiltered tungsten light in the light power range of 25-130 mW, revealed light intensity dependent rectifying properties. Particularly, the modeling of the experimental I-V curves in accordance with the Richardson Schottky and Chueng's theoretical approaches have shown that the Schottky diode ideality factor, series resistance and barrier height decreases with increasing light power. Such behavior indicates wide tunability of the device when used as photosensors. With the features presented by small size, photosensitivity, gigahertz/terahertz spectral responses, the device can be promising element for use in visible light and microwave communications.

