2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 2Citation - Scopus: 2HOW DO SINGULARITIES OF FUNCTIONS AFFECT THE CONVERGENCE OF q-BERNSTEIN POLYNOMIALS?(Element, 2015) Ostrovska, Sofiya; Ozban, Ahmet Yasar; Turan, MehmetIn this article, the approximation of functions with a singularity at alpha is an element of (0, 1) by the q-Bernstein polynomials for q > 1 has been studied. Unlike the situation when alpha is an element of (0, 1) \ {q(-j)} j is an element of N, in the case when alpha = q(-m), m is an element of N, the type of singularity has a decisive effect on the set where a function can be approximated. In the latter event, depending on the types of singularities, three classes of functions have been examined, and it has been found that the possibility of approximation varies considerably for these classes.Article Citation - WoS: 6Citation - Scopus: 7On the q-bernstein Polynomials of Rational Functions With Real Poles(Academic Press inc Elsevier Science, 2014) Ostrovska, Sofiya; Ozban, Ahmet YasarThe paper aims to investigate the convergence of the q-Bernstein polynomials B-n,B-q(f; x) attached to rational functions in the case q > 1. The problem reduces to that for the partial fractions (x - alpha)(-J), j is an element of N. The already available results deal with cases, where either the pole a is simple or alpha not equal q(-m), m is an element of N-0. Consequently, the present work is focused on the polynomials Bn,q(f; x) for the functions of the form f (x) = (x - q(-m))(-j) with j >= 2. For such functions, it is proved that the interval of convergence of {B-n,B-q(f; x)} depends not only on the location, but also on the multiplicity of the pole - a phenomenon which has not been considered previously. (C) 2013 Elsevier Inc. All rights reserved.

