Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 3
    Citation - Scopus: 2
    Parametric Sensitivity Analysis and Performance Evaluation of High-Temperature Anion-Exchange Membrane Fuel Cell
    (Mdpi, 2022) Mehrtash, Mehdi
    In this paper, a three-dimensional model of a high-temperature anion-exchange membrane fuel cell (HT-AEMFC) operating at 110 degrees C is presented. All major transport phenomena along with the electrochemical reactions that occur in the cell are modeled. Since the water is exclusively in the form of steam and there is no phase transition to deal with in the cell, the water management is greatly simplified. The cell performance under various current loads is evaluated, and the results are validated against the experimental data. The cell performance is examined across a range of operating conditions, including cell temperature, inlet flow rate, and inlet relative humidity (RH). The critical link between the local distributions of species and local current densities along the channels is identified. The distribution of reactants continuously drops in the gas flow direction along the flow channels, causing a non-uniform local current distribution that becomes more pronounced at high current loads, where the rate of water generation increases. The findings show that while a higher inlet flow rate enhances the cell performance, a lower flow rate causes it to drop because of reactant depletion in the anode. The sensitivity analysis reveals that the performance of an AEMFC is highly dependent on the humidity of the gas entering the cell. While high inlet RH on the cathode side enhances the cell performance, high inlet RH on the anode side deteriorates it.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Synthesis and Characterization of Novel High Temperature Structural Adhesives Based on Nadic End Capped Mda-Btda Copolyimide
    (Iop Publishing Ltd, 2018) Acar, Oktay; Varis, Serhat; Isik, Tugba; Tirkes, Seha; Demir, Mustafa M.
    A series of novel copolyimide structural adhesives were synthesized using 4,4'-diaminodiphenyl-methane (MDA), 3,4'-oxydianiline (ODA) and 3,3',4,4'-benzophenonetetracarboxylic acid dianhy-dride (BTDA) as co-monomers, and nadic anhydride as an end cap reagent. The adhesives with different MDA and ODA contents were examined in terms of their structure, thermal stability, mechanical properties, and adhesive performance. They have glass transition temperatures (T-g) about 400 degrees C, with thermal stability up to 500 degrees C. The effect of diamine monomer compositions on adhesion performance and processability of the copolyimides were studied. The copolyimides exhibited adhesion strength up to 16.3 MPa at room temperature. Nadic end capped MDA-BTDA-ODA copolyimide resins gained adjustable and controllable processability with the addition of ether bridged aromatic segments. The copolyimide adhesive with equimolar composition of MDA: ODA is distinguished form the both commercial PMR-15 and LARC RP-46 polyimides in terms of its better processability and mechanical performance.