2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 1Deposition and Characterization of ZnSnSe2 Thin-Films Deposited by Using Sintered Stoichiometric Powder(Gazi Univ, 2019) Bayrakli Surucu, Ozge; Gullu, Hasan HuseyinIn this work, ZnSnSe2 (ZTSe) thin films were deposited using crystalline powder grown by vertical Bridgman-Stockbarger technique. The deposition process was carried out by means of e-beam evaporation on the well-cleaned soda lime glass substrates and keeping them at the substrate temperature of 200 degrees C. The structural, optical and electrical properties of ternary ZTSe thin films were investigated depending on the annealing temperature at 250 and 300 degrees C. X-ray diffraction analysis showed that as-grown films were in amorphous structure, however annealing at 250 degrees C triggered the crystallization on the preferred ternary structure and annealing at 300 degrees C resulted in the changes from amorphous to the polycrystalline structure. Using the compositional analysis, the detail information about the stoichiometry and the segregation mechanisms of the constituent elements in the structure were determined for both as-grown and annealed samples. In addition, they were morphologically characterized using scanning electron microscopy technique. The electrical properties were analyzed using temperature dependent dark- and photo-conductivity measurements. From the variation of electrical conductivity as a function of the ambient temperature, the current transport mechanisms and corresponding activation energies at specific temperature intervals for each sample were determined. The optical properties for the ZTSe thin films were studied depending on the structural changes with annealing.Article Citation - WoS: 8Citation - Scopus: 9Investigation of Electrical Properties of In/Znin2< Diode(indian Acad Sciences, 2019) Gullu, H. H.In/ZnIn2Te4/n-Si/Ag diode structure was fabricated by the thermal deposition of a ZnIn2Te4 thin film on n-Si wafer substrate with Ag metal back contact. The structural characteristics of the film were investigated in terms of composition, X-ray diffraction and topographic measurements. The diode structure was completed by evaporating In metal on the film surface as a top contact. The diode parameters as saturation current, barrier height, ideality factor and series resistance values were determined from the semi-logarithmic forward bias current-voltage characteristics of the diode. According to the assumption of the thermionic emission model, the ideality factor was found higher than unity and it was also observed that the barrier height and ideality factor showed a temperature-dependent profile resulting from the non-ideality in the current-voltage behaviour of the diode. As a result, the model was modified by considering inhomogeneous barrier formation and Gaussian distribution was expected to be dominant on 1.37 eV mean barrier height with a deviation of 0.18. In addition, the voltage dependence of these Gaussian diode parameters was investigated. The forward and reverse bias capacitance and conductance measurements showed that there was a slight change in capacitance values with frequency whereas the conductance values decreased with increase in frequency. In addition to the current-voltage analysis, the distribution of density of interface states and the values of series resistance were evaluated as a function of bias voltage and frequency.

