Search Results

Now showing 1 - 10 of 16
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    The Approximation of Logarithmic Function by q-bernstein Polynomials in the Case q > 1
    (Springer, 2007) Ostrovska, Sofiya
    Since in the case q > 1, q-Bernstein polynomials are not positive linear operators on C[ 0, 1], the study of their approximation properties is essentially more difficult than that for 0 < q < 1. Despite the intensive research conducted in the area lately, the problem of describing the class of functions in C[ 0, 1] uniformly approximated by their q-Bernstein polynomials ( q > 1) remains open. It is known that the approximation occurs for functions admitting an analytic continuation into a disc {z : | z| < R}, R > 1. For functions without such an assumption, no general results on approximation are available. In this paper, it is shown that the function f ( x) = ln( x + a), a > 0, is uniformly approximated by its q-Bernstein polynomials ( q > 1) on the interval [ 0, 1] if and only if a >= 1.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    On the q-bernstein Polynomials of the Logarithmic Function in the Case q > 1
    (Walter de Gruyter Gmbh, 2016) Ostrovska, Sofiya
    The q-Bernstein basis used to construct the q-Bernstein polynomials is an extension of the Bernstein basis related to the q-binomial probability distribution. This distribution plays a profound role in the q-boson operator calculus. In the case q > 1, q-Bernstein basic polynomials on [0, 1] combine the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present new results related to the q-Bernstein polynomials B-n,B- q of discontinuous functions in the case q > 1. The behavior of polynomials B-n,B- q(f; x) for functions f possessing a logarithmic singularity at 0 has been examined. (C) 2016 Mathematical Institute Slovak Academy of Sciences
  • Article
    Citation - WoS: 7
    On the Approximation of Analytic Functions by the q-bernstein Polynomials in the Case q > 1
    (Kent State University, 2010) Ostrovska, Sofiya
    Since for q > 1, the q-Bernstein polynomials B(n,q) are not positive linear operators on C[0, 1], the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case q > 1 are presented. It is shown that if f is an element of C[0, 1] and admits an analytic continuation f(z) into {z : |z| < a}, then B(n,q) (f; z) -> f (z) as n -> infinity, uniformly on any compact set in {z : |z| < a}.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 13
    The Convergence of q-bernstein Polynomials (0 < q < 1) in the Complex Plane
    (Wiley-v C H verlag Gmbh, 2009) Ostrovska, Sofiya
    The paper focuses at the estimates for the rate of convergence of the q-Bernstein polynomials (0 < q < 1) in the complex plane. In particular, a generalization of previously known results on the possibility of analytic continuation of the limit function and an elaboration of the theorem by Wang and Meng is presented. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Article
    Qualitative results on the convergence of the q-Bernstein polynomials
    (North Univ Baia Mare, 2015) Ostrovska, Sofiya; Turan, Mehmet
    Despite many common features, the convergence properties of the Bernstein and the q-Bernstein polynomials are not alike. What is more, the cases 0 < q < 1 and q > 1 are not similar to each other in terms of convergence. In this work, new results demonstrating the striking differences which may occur in those convergence properties are presented.
  • Article
    Citation - WoS: 2
    The Approximation of Power Function by the q-bernstein Polynomials in the Case q > 1
    (Element, 2008) Ostrovska, Sofiya
    Since for q > 1. q-Bernstein polynomials are not positive linear operators on C[0, 1] the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. It is known that, in the case q > 1. the q-Bernstein polynomials approximate the entire functions and, in particular, polynomials uniformly on any compact set in C. In this paper. the possibility of the approximation for the function (z + a)(alpha), a >= 0. with a non-integer alpha > -1 is studied. It is proved that for a > 0, the function is uniformly approximated on any compact set in {z : vertical bar z vertical bar < a}, while on any Jordan arc in {z : vertical bar z vertical bar > a}. the uniform approximation is impossible, In the case a = 0(1) the results of the paper reveal the following interesting phenomenon: the power function z(alpha), alpha > 0: is approximated by its, q-Bernstein polynomials either on any (when alpha is an element of N) or no (when alpha is not an element of N) Jordan arc in C.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 15
    The q-versions of the Bernstein Operator: From Mere Analogies To Further Developments
    (Springer Basel Ag, 2016) Ostrovska, Sofiya
    The article exhibits a review of results on two popular q-versions of the Bernstein polynomials, namely, the LupaAY q-analogue and the q-Bernstein polynomials. Their similarities and distinctions are discussed.
  • Article
    Citation - WoS: 15
    Citation - Scopus: 18
    The Sharpness of Convergence Results for q-bernstein Polynomials in The Case q > 1
    (Springer Heidelberg, 2008) Ostrovska, Sofiya
    Due to the fact that in the case q > 1 the q-Bernstein polynomials are no longer positive linear operators on C[0, 1], the study of their convergence properties turns out to be essentially more difficult than that for q 1. In this paper, new saturation theorems related to the convergence of q-Bernstein polynomials in the case q > 1 are proved.
  • Article
    Citation - WoS: 16
    Citation - Scopus: 16
    q-bernstein Polynomials of the Cauchy Kernel
    (Elsevier Science inc, 2008) Ostrovska, Sofiya
    Due to the fact that in the case q > 1, q-Bernstein polynomials are not positive linear operators on C[0, 1], the study of their approximation properties is essentially more difficult than that for 0 < q < 1. Despite the intensive research conducted in the area lately, the problem of describing the class of functions in C[0, 1] uniformly approximated by their q-Bernstein polynomials (q > 1) is still open. In this paper, the q-Bernstein polynomials B-n,B-q(f(a); z) of the Cauchy kernel f(a) = 1/(z - a), a is an element of C \ [0, 1] are found explicitly and their properties are investigated. In particular, it is proved that if q > 1, then polynomials B-n,B-q(f(a); z) converge to f(a) uniformly on any compact set K subset of {z : vertical bar z vertical bar < vertical bar a vertical bar}. This result is sharp in the following sense: on any set with an accumulation point in {z : vertical bar z vertical bar > vertical bar a vertical bar}, the sequence {B-n,B-q(f(a); z) is not even uniformly bounded. (C) 2007 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 10
    On the Image of the Limit q-bernstein Operator
    (Wiley, 2009) Ostrovska, Sofiya
    The limit q-Bernstein operator B-q emerges naturally as an analogue to the Szasz-Mirakyan operator related to the Euler distribution. Alternatively, B-q comes out as a limit for a sequence of q-Bernstein polynomials in the case 0