Search Results

Now showing 1 - 2 of 2
  • Article
    On the Convergence of the q-bernstein Polynomials for Power Functions
    (Springer Basel Ag, 2021) Ostrovska, Sofiya; Ozban, Ahmet Yasar
    The aim of this paper is to present new results related to the convergence of the sequence of the complex q-Bernstein polynomials {B-n,B-q(f(alpha); z)}, where 0 < q not equal 1 and f(alpha) = x(alpha), alpha >= 0, is a power function on [0, 1]. This study makes it possible to describe all feasible sets of convergence K for such polynomials. Specifically, if either 0 < q < 1 or alpha is an element of N-0, then K = C, otherwise K = {0} boolean OR {q(-j)}(j=0)(infinity). In the latter case, this identifies the sequence K = {0} boolean OR {q(-j)}(j=0)(infinity) as the 'minimal' set of convergence for polynomials B-n,B-q(f; z), f is an element of C[0, 1] in the case q > 1. In addition, the asymptotic behavior of the polynomials {B-n,B-q(f(alpha); z)}, with q > 1 has been investigated and the obtained results are illustrated by numerical examples.
  • Book Part
    Approximation of Discontinuous Functions by q-bernstein Polynomials
    (Springer international Publishing Ag, 2016) Ostrovska, Sofia; Ozban, Ahmet Yasar
    This chapter presents an overview of the results related to the q-Bernstein polynomials with q > 1 attached to discontinuous functions on [0, 1]. It is emphasized that the singularities of such functions located on the set Jq : = {0} boolean OR {q-l}(l=0, infinity), q > 1 are definitive for the investigation of the convergence properties of their q-Bernstein polynomials.