8 results
Search Results
Now showing 1 - 8 of 8
Article On the Lupas q-transform of Unbounded Functions(Walter de Gruyter Gmbh, 2023) Ostrovska, Sofiya; Turan, MehmetThe Lupa , s q-transform comes out naturally in the study of the Lupa , s q-analogue of the Bernstein operator. It is closely related to the Heine q-distribution which has a numerous application in q-boson operator calculus and to the Valiron method of summation for divergent series. In this paper, the Lupa , s q-transform (lambda(q)f)(z), q is an element of (0, 1), of unbounded functions is considered in distinction to the previous researches, where only the case f is an element of C[0, 1] have been investigated. First, the condition for a function to possess the Lupa , s q-transform is presented. Also, results concerning the connection between growth rate of the function f (t) as t -> 1(-) and the growth of its Lupa , s q-transform (lambda(q)f)(z) as z -> infinity are established. (c) 2023 Mathematical Institute Slovak Academy of SciencesArticle Citation - WoS: 1Citation - Scopus: 1On the Rate of Convergence for the q-durrmeyer Polynomials in Complex Domains(Walter de Gruyter Gmbh, 2024) Gurel, Ovgu; Ostrovska, Sofiya; Turan, MehmetThe q-Durrmeyer polynomials are one of the popular q-versions of the classical operators of approximation theory. They have been studied from different points of view by a number of researchers. The aim of this work is to estimate the rate of convergence for the sequence of the q-Durrmeyer polynomials in the case 0 < q < 1. It is proved that for any compact set D subset of C, the rate of convergence is O(q(n)) as n -> infinity. The sharpness of the obtained result is demonstrated.Article Citation - WoS: 11Citation - Scopus: 15The q-versions of the Bernstein Operator: From Mere Analogies To Further Developments(Springer Basel Ag, 2016) Ostrovska, SofiyaThe article exhibits a review of results on two popular q-versions of the Bernstein polynomials, namely, the LupaAY q-analogue and the q-Bernstein polynomials. Their similarities and distinctions are discussed.Article On the Injectivity With Respect To q of the Lupas q-transform(Taylor & Francis Ltd, 2024) Yilmaz, Ovgue Gurel; Ostrovska, Sofiya; Turan, MehmetThe Lupas q-transform has first appeared in the study of the Lupas q-analogue of the Bernstein operator. Given 0 < q < 1 and f is an element of C[0, 1], the Lupas q-transform is defined by Lambda(q)(f; x) Pi(infinity)(k=0) 1/1 + q(k)x Sigma(k=0)f(1 - q(k))q(k(k-1)/2)x(k)/(1 - q)(1 - q(2)) center dot center dot center dot (1 - q(k)), x >= 0. During the last decades, this transform has been investigated from a variety of angles, including its analytical, geometric features, and properties of its block functions along with their sums. As opposed to the available studies dealing with a fixed value of q, the present work is focused on the injectivity of Lambda(q) with respect to parameter q. More precisely, the conditions on f such that equality Lambda(q)(f; x) = Lambda(r)(f; x); x >= 0 implies q = r have been established.Article Citation - WoS: 16Citation - Scopus: 16q-bernstein Polynomials of the Cauchy Kernel(Elsevier Science inc, 2008) Ostrovska, SofiyaDue to the fact that in the case q > 1, q-Bernstein polynomials are not positive linear operators on C[0, 1], the study of their approximation properties is essentially more difficult than that for 0 < q < 1. Despite the intensive research conducted in the area lately, the problem of describing the class of functions in C[0, 1] uniformly approximated by their q-Bernstein polynomials (q > 1) is still open. In this paper, the q-Bernstein polynomials B-n,B-q(f(a); z) of the Cauchy kernel f(a) = 1/(z - a), a is an element of C \ [0, 1] are found explicitly and their properties are investigated. In particular, it is proved that if q > 1, then polynomials B-n,B-q(f(a); z) converge to f(a) uniformly on any compact set K subset of {z : vertical bar z vertical bar < vertical bar a vertical bar}. This result is sharp in the following sense: on any set with an accumulation point in {z : vertical bar z vertical bar > vertical bar a vertical bar}, the sequence {B-n,B-q(f(a); z) is not even uniformly bounded. (C) 2007 Elsevier Inc. All rights reserved.Article Citation - WoS: 15Citation - Scopus: 18The Sharpness of Convergence Results for q-bernstein Polynomials in The Case q > 1(Springer Heidelberg, 2008) Ostrovska, SofiyaDue to the fact that in the case q > 1 the q-Bernstein polynomials are no longer positive linear operators on C[0, 1], the study of their convergence properties turns out to be essentially more difficult than that for q 1. In this paper, new saturation theorems related to the convergence of q-Bernstein polynomials in the case q > 1 are proved.Article Citation - WoS: 8Citation - Scopus: 10On the Image of the Limit q-bernstein Operator(Wiley, 2009) Ostrovska, SofiyaThe limit q-Bernstein operator B-q emerges naturally as an analogue to the Szasz-Mirakyan operator related to the Euler distribution. Alternatively, B-q comes out as a limit for a sequence of q-Bernstein polynomials in the case 0Article Citation - WoS: 3Citation - Scopus: 4The Unicity Theorems for the Limit Q-Bernstein Operator(Taylor & Francis Ltd, 2009) Ostrovska, SofiyaThe limit q-Bernstein operator [image omitted] emerges naturally as a q-version of the Szasz-Mirakyan operator related to the Euler distribution. The latter is used in the q-boson theory to describe the energy distribution in a q-analogue of the coherent state. The limit q-Bernstein operator has been widely studied lately. It has been shown that [image omitted] is a positive shape-preserving linear operator on [image omitted] with [image omitted] Its approximation properties, probabilistic interpretation, the behaviour of iterates, eigenstructure and the impact on the smoothness of a function have been examined. In this article, we prove the following unicity theorem for operator: if f is analytic on [0, 1] and [image omitted] for [image omitted] then f is a linear function. The result is sharp in the following sense: for any proper closed subset [image omitted] of [0, 1] satisfying [image omitted] there exists a non-linear infinitely differentiable function f so that [image omitted] for all [image omitted].

