2 results
Search Results
Now showing 1 - 2 of 2
Conference Object PARAMETER OPTIMIZATION OF A PBI MEMBRANE-BASED HIGH TEMPERATURE-ELECTROCHEMICAL HYDROGEN COMPRESSOR FED WITH H2 AND CO MIXTURE(International Association for Hydrogen Energy, IAHE, 2022) Kuzu,C.; Ozgur Colpan,C.; Durmuş,G.N.B.; Devrim,Y.In today's world, the increase in the amount of energy needed with the increase in the human population and the depletion of fossil fuels has pushed researchers to search for alternative fuels. Hydrogen is expected to take an important share among the alternative fuels in the future. However, it has some challenges in terms of its storage and pressurization. In this study, the effect of back diffusion on the performance of a PBI membrane-based electrochemical hydrogen compressor operating at 160 °C. Pressure values are calculated and validated with experimental results; and the change of flux, voltage and cell efficiency with time are presented. © 2022 Proceedings of WHEC 2022 - 23rd World Hydrogen Energy Conference: Bridging Continents by H2. All rights reserved.Conference Object Citation - WoS: 90Citation - Scopus: 108Modeling and Sensitivity Analysis of High Temperature Pem Fuel Cells by Using Comsol Multiphysics(Pergamon-elsevier Science Ltd, 2016) Sezgin, Berna; Caglayan, Dilara Gulcin; Devrim, Yilser; Steenberg, Thomas; Eroglu, InciThe objective of this study is to observe the effect of the critical design parameters, velocities of inlet gases (hydrogen and air) and the conductivity of polymer membrane, on the performance of a high temperature PEM fuel cell. A consistent and systematic mathematical model is developed in order to study the effect of these parameters. The model is applied to an isothermal, steady state, three-dimensional PEM fuel cell in order to observe concentration profiles, current density profiles and polarization curves. The model includes the transport of gases in anode and cathode gas flow channels, diffusion in the catalyst layers, the transport of water and hydronium ion in the polymer electrolyte and in the catalyst layers, and the transport of electrical current in the solid phase. The model is considered as having a single flow channel. The simulation is performed by using licensed Comsol Multiphysics 5.0, Fuel Cells &Batteries Module. The results compare well with the experimental polarization data obtained at 160 degrees C for ohmic and activation regions. The best match with the experimental data is obtained when the inlet hydrogen gas velocity is 0.133 m/s whereas inlet air velocity is 1.3 m/s for proton conductivity of 10 S/m. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

