Search Results

Now showing 1 - 8 of 8
  • Article
    Citation - WoS: 4
    Citation - Scopus: 6
    A Study on Microstructural Characterization of the Interface Between Apatite-Wollastonite Based Glass Ceramic and Feldspathic Dental Porcelain
    (Elsevier Sci Ltd, 2016) Pekkan, Gurel; Pekkan, Keriman; Park, Jongee; Ozturk, Abdullah
    In this study, the contact area between the glass ceramic containing apatite [Ca-10(PO4)6(O,F-2)] and wollastonite [CaO center dot SiO2] crystals (A-W glass ceramic) and feldspathic dental porcelain was characterized using scanning electron microscope and energy dispersive spectroscopy. Alumina-added A W glass ceramics were prepared by sintering glass compacts in the MgO-CaO-SiO2-P2O5-Al2O3 system at 1100 degrees C. Commercially available dental porcelains for alumina frameworks were applied on the A-W glass ceramic specimen by brushing and carving, and then fired at 960 degrees C using an electrically heated vacuum-furnace. Results revealed that veneering of feldspathic dental porcelain on alumina-added A-W glass ceramic is possible by an interaction between them, with which a diffusion process involving i) seperation of the phases forming the alumina-added A-W glass ceramic, ii) chemical diffusion of elements between alumina-added A-W glass ceramic and feldspathic dental porcelain, and iii) formation of an interface layer, is taking place. The system studied has interfacial characteristics similar to the commercially available dental materials currently used in restorative dentistry. Hence, it may be further processed for potential clinical applications.
  • Article
    Citation - WoS: 34
    Citation - Scopus: 34
    Friction Stir Processing of Dual Phase Steel: Microstructural Evolution and Mechanical Properties
    (Elsevier Science inc, 2019) Aktarer, S. M.; Kucukomeroglu, T.; Davut, K.
    The influence of friction stir processing (FSP) on the microstructure and mechanical properties of a DP 600 steel has been studied. The microstructure evolution during the FSP has been characterized using electron back scatter diffraction (EBSD) technique and scanning and transmission electron microscopes. Standard tension and hardness tests were used to characterize the mechanical properties. The results show that the FSP produced a refined microstructure composed of ferrite, bainite, martensite, and tempered martensite which in turn increased the hardness and strength magnitudes by a factor of 1.5. The initially 2.83 mu m average grain size of ferrite has decreased to 0.79 mu m in the pin effected zone of (PE-SZ-I) of the processed region. Both EBSD and TEM observations showed regions with high dislocation density and sub-structures region in the processed zone. The grain size became coarser, the density of both dislocations and low-angle grain boundaries decrease, away from the processed zone. Moreover, phase fractions and hardness values were predicted using CALPHAD thermodynamic based software based on commercial material properties. Although the prediction does not take into consideration the influence of severe plastic deformation, the results were within 10% uncertainties of the experimental findings. The present study demonstrates that an ultra-fine grained structure can be obtained through the thickness of a 1.5 mm thick D P600 steel sheet via FSP. FSP can produce a range of different hardness and strength values; which can also be predicted successfully by inputting the composition and local temperatures reached during the FSP.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 8
    Topological Derivative Based Optimization of 3d Porous Elastic Microstructures
    (Elsevier Science Bv, 2014) Ozdemir, Izzet
    As an alternative to the well established microstructural optimization techniques, topological derivative based optimization framework has been proposed and successfully implemented for tailoring/optimizing 2D elastic composites recently, Amstutz et al. [1]. In this paper, an optimization framework for 3D porous elastic microstructures is presented which is based on the notion of topological derivative and the computational homogenization of elastic composites. The sensitivity of the homogenized elasticity tensor to the insertion of infinitesimal hollow spheres within the elastic microstructure is used as the measure for the finite element based evolutionary optimization algorithm. The capabilities of the proposed framework, which is free of any regularization parameter, is assessed by means of example problems including some comparisons with analytical bounds. (C) 2013 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 123
    Citation - Scopus: 135
    Wire arc additive manufacturing of high-strength low alloy steels: study of process parameters and their influence on the bead geometry and mechanical characteristics
    (Springer London Ltd, 2020) Yildiz, Ahmet Suat; Davut, Kemal; Koc, Baris; Yilmaz, Oguzhan
    Additive manufacturing (AM) is becoming increasingly popular since it offers flexibility to produce complex designs with less tooling and minimum material at shorter lead times. Wire arc additive manufacturing (WAAM) is a variant of additive manufacturing which allows economical production of large-scale and high-density parts. The WAAM process has been studied extensively on different steels; however, the influence of process parameters, specifically wire feed speed (WFS), travel speed (TS), and their ratio on bead geometry, microstructure, and mechanical properties, are yet to be studied. The present work aims at closing this gap by using the WAAM process with robotic cold metal transfer (CMT) technology to manufacture high-strength structural steel parts. For that purpose, single-bead welds were produced from HSLA steel by varying WFS between 5 and 10 m/min and the WFS to TS ratio between 10 and 20. Those variations produce heat inputs in the range of 266-619 J/mm. The results have shown that the wire feed speed to travel speed ratio is the major parameter to control the heat input. Increasing heat input increases characteristic bead dimension, whereas it reduces the hardness. In the second part of experiments, two single-bead walls were deposited via the parallel deposition strategy and one multiple-bead wall was produced using the oscillation strategy. The tensile properties were tested along two directions: parallel and perpendicular to deposition directions. For the yield strength and tensile strength, the difference between horizontally and vertically tested specimens was smaller than the standard deviations. On the other hand, the total and uniform elongation values exhibit up to 10% difference in the test direction, indicating anisotropy in ductility. Those tensile properties were attributed to repeated thermal cycles during the WAMM process, which can cause heat transfer in multiple directions. The yield strength of the multiple-bead wall produced via oscillation was lower, whereas its ductility was higher. The tensile properties and hardness differences were found to correlate well with the microstructure.
  • Article
    Microstructure-Based Prediction of Mechanical Properties of Austempered Ductile Iron Using Multiple Linear Regression Analysis
    (Springer Int Publ AG, 2025) Yalcin, M. Alp; Davut, Kemal
    Multiple linear regression analysis (MLRA) was used to predict the mechanical properties of austempered ductile iron (ADI) including yield and tensile strength, uniform elongation, hardening exponent, as well as fracture energy by building a model that uses characteristic features of microstructural constituents as input parameters. The complex multi-scale microstructure of ADI, which is composed of spherical graphite particles over 10 mu m diameter; and an ausferritic matrix with sub-micron sized features, makes it ideal for prediction of mechanical properties. For that purpose, low alloyed ductile iron samples austempered between 300 and 400 degrees C for 45-180 min were tensile tested, and also multi-scale microstructural characterization were carried out using optical microscope, SEM, and EBSD technique. Moreover, a sensitivity analysis was performed to determine which microstructural parameter(s) each mechanical property is most sensitive to. The results show that tensile and yield strength are most sensitive to size and morphology of matrix phases. Moreover, the size and aspect ratio of acicular ferrite correlate well with those of high-carbon austenite; since both form during transformation of parent austenite into ausferrite during austempering treatment. Equiaxed parent austenite grains transform into ausferrite with acicular morphology during the austempering treatment; and presence of equiaxed austenite grains in the austempered samples indicates untransformed regions during austempering treatment. Ductility was found to be more sensitive to nodularity of graphite particles, and this sensitivity was attributed to the size difference between graphite particles and grain size of matrix phases.
  • Article
    Citation - WoS: 24
    Citation - Scopus: 25
    Microstructural and Texture Evolution During Thermo-Hydrogen Processing of Ti6al4v Alloys Produced by Electron Beam Melting
    (Elsevier Science inc, 2020) Dogu, Merve Nur; Esen, Ziya; Davut, Kemal; Tan, Evren; Gumus, Berkay; Dericioglu, Arcan F.
    The present study was conducted to reveal the effects of building angles and post heat-treatments (2-step Thermo-Hydrogen Processing (THP) and conventional annealing treatment) on the density, microstructure and texture of Ti6Al4V alloy parts produced by Electron Beam Melting (EBM). The results showed that regardless of the building angle; the density, microstructure and crystallographic texture (defined with respect to building angle) of the as-produced samples were identical; having Widmanstatten a structure and columnar beta-grains which are parallel to building direction. The main texture component for the alpha phase was (10 (1) over bar0)//building direction, and for beta phase (001)//building or heat flow direction. The first step of THP, namely, the hydrogenation step, produced a needle-like microstructure and increased the local misorientations due to lattice distortion. On the other hand, after application of the second step of THP, dehydrogenation step, microstructure was refined, particularly alpha-grains that were larger than 10 mu m and located at grain boundaries. Moreover, THP randomized the crystallographic texture since it involves beta to alpha phase transformation, at which one beta-grain can produce 12 distinct alpha-variants. The grain boundary misorientation distributions also changed in accordance with the microstructural changes during the 2-step THP. On the other hand, annealing coarsened the grain boundary and Widmanstatten alpha phases; moreover, it changed the texture so that the basal planes (0001) rotated 30 degrees around the building direction.
  • Article
    Citation - Scopus: 2
    Simulation Trends in Quenching Technology for Automotive Components
    (Maney Publishing, 2014) Felde,I.; Simsir,C.
    Quenching technology is widely used in automotive industry from a simple immersion quenching of gears up to the complex production technology of press hardening. The selection of process parameters to develop the desired properties is challenging due to the complexity of the physical phenomena occurring during the manufacturing cycle. In the last decades several computational methods have been applied successful to optimise the heat treatment processes. This paper is focusing on some examples demonstrating the state of the art of the simulation tools, including the physical phenomena of quenching, the theoretical background of the coupled models used for estimation the microstructure, mechanical properties and deformation of heat treated automotive components. © 2014 IHTSE Partnership.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Effect of Martensite Volume Fraction on Mechanical Properties of Dual-Phase Treated Aisi-4012 Sheet Steels
    (Carl Hanser verlag, 2010) Aksakal, B.; Karaca, F.; Arikan, R.
    Hot rolled AISI-4012 sheet steels have been heat treated to obtain a ductile dual phase microstructure. The specimens were heat treated in the ferrite (a) and austenite (7) phase region at temperatures of 740, 760, 790 and 820 degrees C and corresponding time intervals of 15, 30, 60 and 90 min and then quenched into water. Hardness measurements, tensile, bending, and impact tests were performed in order to determine the mechanical properties of the dual phase steel. These were examined with respect to the martensite volume fraction. Both the flow and tensile stresses increased whereas elongation decreased with increasing dual phase treatment temperature and martensite volume fraction. The optimum mechanical properties and the appropriate dual-phase microstructure are achieved at 740 and 760 degrees C annealing with subsequent water quenching. From examinations it was deduced that ductile fracture occurred in the tested samples.