Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    The Effectiveness of Redistribution in Carbon Inequality: What About the Top 1%
    (MDPI, 2025) Boz, Arinc; Unalan, Gokhan; Caskurlu, Eren
    This study investigates the impact of income redistribution on carbon emissions across 154 countries from 1995 to 2023, with a particular focus on carbon inequality. Using a dynamic panel approach with two-step System GMM estimations, the analysis considers three dependent variables: average per capita emissions, top 1% per capita emissions, and the ratio of top 1% per capita emissions to national average per capita emissions. Results show that income redistribution (measured in both absolute and relative terms) significantly reduces average per capita emissions in the short term. However, redistribution has no mitigating effect on the carbon emissions of the top 1%; in some models, it is even associated with increases in elite emissions and a widening of carbon inequality. These findings suggest that while redistribution may contribute to national emission reductions, it is insufficient to curb the carbon-intensive lifestyles of the wealthiest. The analysis confirms the Environmental Kuznets Curve (EKC) hypothesis and underscores the need for complementary policy tools to more effectively address the emissions of high-emitting individuals. Overall, this study contributes to the literature by linking income redistribution with emission disparities across income groups and highlights the importance of considering distributional dynamics in climate policy design.
  • Article
    Calcium Phosphate Honeycomb Scaffolds With Tailored Microporous Walls Using Phase Separation-Assisted Digital Light Processing
    (MDPI, 2025) Kim, Gyu-Nam; Park, Jae-Hyung; Song, Jae-Uk; Koh, Young-Hag; Park, Jongee
    The present study reports on the manufacturing of biphasic calcium phosphate (BCP) honeycomb scaffolds with tailored microporous walls using phase separation-assisted digital light processing (PS-DLP). To create micropores in BCP walls, camphene was used as the pore-forming agent for preparing BCP suspensions, since it could be completely dissolved in photopolymerizable monomers composed of triethylene glycol dimethacrylate (TEGDMA) and polyethylene glycol diacrylate (PEGDA) and then undergo phase separation when placed at 5 degrees C. Therefore, solid camphene crystals could be formed in phase-separated BCP layers and then readily removed via sublimation after the photopolymerization of monomer networks embedding BCP particles by DLP. This approach allowed for tight control over the microporosity of BCP walls by adjusting the camphene content. As the camphene content increased from 40 to 60 vol%, the microporosity increased from similar to 38 to similar to 59 vol%. Consequently, the overall porosity of dual-scale porosity scaffolds increased from similar to 51 to similar to 67 vol%, while their compressive strength decreased from similar to 70.4 to similar to 13.7 MPa. The mass transport ability increased remarkably with an increase in microporosity.