Search Results

Now showing 1 - 10 of 15
  • Article
    Citation - WoS: 19
    Citation - Scopus: 21
    Interval Criteria for the Forced Oscillation of Super-Half Differential Equations Under Impulse Effects
    (Pergamon-elsevier Science Ltd, 2009) Ozbekler, A.; Zafer, A.
    In this paper, we derive new interval oscillation criteria for a forced super-half-linear impulsive differential equation having fixed moments of impulse actions. The results are extended to a more general class of nonlinear impulsive differential equations. Examples are also given to illustrate the relevance of the results. (C) 2009 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 3
    Boundary Value Problems on Half-Line for Second-Order Nonlinear Impulsive Differential Equations
    (Wiley, 2018) Akgol, S. D.; Zafer, A.
    We obtain sufficient conditions for existence and uniqueness of solutions of boundary value problems on half-line for a class of second-order nonlinear impulsive differential equations. Our technique is different than the traditional ones, as it is based on asymptotic integration method involving principal and nonprincipal solutions. Examples are provided to illustrate the relevance of the results.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Nonoscillation and Oscillation of Second-Order Impulsive Differential Equations With Periodic Coefficients
    (Pergamon-elsevier Science Ltd, 2012) Ozbekler, A.; Zafer, A.
    In this paper, we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on the existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained. (C) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 21
    Principal and Nonprincipal Solutions of Impulsive Differential Equations With Applications
    (Elsevier Science inc, 2010) Ozbekler, A.; Zafer, A.
    We introduce the concept of principal and nonprincipal solutions for second order differential equations having fixed moments of impulse actions is obtained. The arguments are based on Polya and Trench factorizations as in non-impulsive differential equations, so we first establish these factorizations. Making use of the existence of nonprincipal solutions we also establish new oscillation criteria for nonhomogeneous impulsive differential equations. Examples are provided with numerical simulations to illustrate the relevance of the results. (C) 2010 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 27
    Citation - Scopus: 29
    Oscillation of Solutions of Second Order Mixed Nonlinear Differential Equations Under Impulsive Perturbations
    (Pergamon-elsevier Science Ltd, 2011) Ozbekler, A.; Zafer, A.
    New oscillation criteria are obtained for second order forced mixed nonlinear impulsive differential equations of the form (r(t)Phi(alpha)(x'))' + q(t)(Phi)(x) + Sigma(n)(k=1)q(k)(t)Phi beta(k)(x ) = e(t), t not equal theta(I) x(theta(+)(i)) = ajx(theta(+)(i)) = b(i)x'(theta(i)) where Phi(gamma):= ,s vertical bar(gamma-1)s and beta(1) > beta(2) > ... > beta(m) > alpha > beta(m+1)> ... > beta(n) > beta(n) > 0. If alpha = 1 and the impulses are dropped, then the results obtained by Sun and Wong [Y.G. Sun, J.S.W. Wong, Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007) 549-560] are recovered. Examples are given to illustrate the results. (C) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 15
    Stability Criterion for Second Order Linear Impulsive Differential Equations With Periodic Coefficients
    (Wiley-v C H verlag Gmbh, 2008) Guseinov, G. Sh.; Zafer, A.
    In this paper we obtain instability and stability criteria for second order linear impulsive differential equations with periodic coefficients. Further, a Lyapunov type inequality is also established. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Article
    Citation - WoS: 43
    Citation - Scopus: 43
    Stability Criteria for Linear Periodic Impulsive Hamiltonian Systems
    (Academic Press inc Elsevier Science, 2007) Guseinov, G. Sh.; Zafer, A.
    In this paper we obtain stability criteria for linear periodic impulsive Hamiltonian systems. A Lyapunov type inequality is established. Our results improve also the ones previously obtained for systems without impulse effect. (c) 2007 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Principal and Nonprincipal Solutions of Impulsive Dynamic Equations: Leighton and Wong Type Oscillation Theorems
    (Springer, 2023) Zafer, A.; Akgol, S. Dogru
    Principal and nonprincipal solutions of differential equations play a critical role in studying the qualitative behavior of solutions in numerous related differential equations. The existence of such solutions and their applications are already documented in the literature for differential equations, difference equations, dynamic equations, and impulsive differential equations. In this paper, we make a contribution to this field by examining impulsive dynamic equations and proving the existence of such solutions for second-order impulsive dynamic equations. As an illustration, we prove the famous Leighton and Wong oscillation theorems for impulsive dynamic equations. Furthermore, we provide supporting examples to demonstrate the relevance and effectiveness of the results.
  • Article
    Citation - WoS: 17
    Citation - Scopus: 20
    Forced Oscillation of Super-Half Impulsive Differential Equations
    (Pergamon-elsevier Science Ltd, 2007) Oezbekler, A.; Zafer, A.
    By using a Picone type formula in comparison with oscillatory unforced half-linear equations, we derive new oscillation criteria for second order forced super-half-linear impulsive differential equations having fixed moments of impulse actions. In the superlinear case, the effect of a damping term is also considered. (c) 2007 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Asymptotic Representation of Solutions for Second-Order Impulsive Differential Equations
    (Elsevier Science inc, 2018) Akgol, S. Dogru; Zafer, A.
    We obtain sufficient conditions which guarantee the existence of a solution of a class of second order nonlinear impulsive differential equations with fixed moments of impulses possessing a prescribed asymptotic behavior at infinity in terms of principal and nonprincipal solutions. An example is given to illustrate the relevance of the results. (C) 2018 Elsevier Inc. All rights reserved.