2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 1Citation - Scopus: 1Shape-Preserving Properties of the Limit q-durrmeyer Operator(Academic Press inc Elsevier Science, 2024) Yilmaz, Ovgu Gurel; Ostrovska, Sofiya; Turan, MehmetThe present work aims to establish the shape-preserving properties of the limit q- Durrmeyer operator, D q for 0 < q < 1. It has been proved that the operator is monotonicity- and convexity-preserving. What is more, it maps a function m - convex along {q (j)}(infinity)(j =0) to a function m - convex along any sequence { xq( j )}(infinity)(j =0) , x is an element of (0, 1). (c) 2024 Elsevier Inc. All rights reserved.Article On the Continuity in q of the Family of the Limit q-durrmeyer Operators(de Gruyter Poland Sp Z O O, 2024) Yilmaz, Ovgu Gurel; Ostrovska, Sofiya; Turan, MehmetThis study deals with the one-parameter family {D-q}(q is an element of[0,1]) of Bernstein-type operators introduced by Gupta and called the limit q-Durrmeyer operators. The continuity of this family with respect to the parameter q is examined in two most important topologies of the operator theory, namely, the strong and uniform operator topologies. It is proved that {D-q}(q is an element of[0,1]) is continuous in the strong operator topology for all q is an element of [0, 1]. When it comes to the uniform operator topology, the continuity is preserved solely at q = 0 and fails at all q is an element of (0, 1]. In addition, a few estimates for the distance between two limit q-Durrmeyer operators have been derived in the operator norm on C[0, 1].

