Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    The Impact of the Limit q-durrmeyer Operator on Continuous Functions
    (Springer Heidelberg, 2024) Yilmaz, Ovgu Gurel; Ostrovska, Sofiya; Turan, Mehmet
    The limit q-Durrmeyer operator, D-infinity,D-q, was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172-178, 2008) during a study of q-analogues for the Bernstein-Durrmeyer operator. In the present work, this operator is investigated from a different perspective. More precisely, the growth estimates are derived for the entire functions comprising the range of D-infinity,D-q. The interrelation between the analytic properties of a function f and the rate of growth for D(infinity,q)f are established, and the sharpness of the obtained results are demonstrated.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Shape-Preserving Properties of the Limit q-durrmeyer Operator
    (Academic Press inc Elsevier Science, 2024) Yilmaz, Ovgu Gurel; Ostrovska, Sofiya; Turan, Mehmet
    The present work aims to establish the shape-preserving properties of the limit q- Durrmeyer operator, D q for 0 < q < 1. It has been proved that the operator is monotonicity- and convexity-preserving. What is more, it maps a function m - convex along {q (j)}(infinity)(j =0) to a function m - convex along any sequence { xq( j )}(infinity)(j =0) , x is an element of (0, 1). (c) 2024 Elsevier Inc. All rights reserved.
  • Article
    On the Image of the Lupas q-analogue of the Bernstein Operators
    (Springernature, 2024) Yilmaz, Ovgu Gurel; Ostrovska, Sofiya; Turan, Mehmet
    The Lupas q-analogue, R-n,R-q, is historically the first known q-version of the Bernstein operator. It has been studied extensively in different aspects by a number of authors during the last decades. In this work, the following issues related to the image of the Lupas q-analogue are discussed: A new explicit formula for the moments has been derived, independence of the image R-n,R-q from the parameter q has been examined, the diagonalizability of operator R-n,R-q has been proved, and the fact that R-n,R-q does not preserve modulus of continuity has been established.