2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 1Citation - Scopus: 1Modeling of Kappa Factor Using Multivariate Adaptive Regression Splines: Application To the Western Türkiye Ground Motion Dataset(Springer, 2024) Kurtulmus, Tevfik Ozgur; Yerlikaya-Ozkurt, Fatma; Askan, AysegulThe recent seismic activity on Turkiye's west coast, especially in the Aegean Sea region, shows that this region requires further attention. The region has significant seismic hazards because of its location in an active tectonic regime of North-South extension with multiple basin structures on soft soil deposits. Recently, despite being 70 km from the earthquake source, the Samos event (with a moment magnitude of 7.0 on October 30, 2020) caused significant localized damage and collapse in the Izmir city center due to a combination of basin effects and structural susceptibility. Despite this activity, research on site characterization and site response modeling, such as local velocity models and kappa estimates, remains sparse in this region. Kappa values display regional characteristics, necessitating the use of local kappa estimations from previous earthquake data in region-specific applications. Kappa estimates are multivariate and incorporate several characteristics such as magnitude and distance. In this study, we assess and predict the trend in mean kappa values using three-component strong-ground motion data from accelerometer sites with known VS30 values throughout western Turkiye. Multiple linear regression (MLR) and multivariate adaptive regression splines (MARS) were used to build the prediction models. The effects of epicentral distance Repi, magnitude Mw, and site class (VS30) were investigated, and the contributions of each parameter were examined using a large dataset containing recent seismic activity. The models were evaluated using well-known statistical accuracy criteria for kappa assessment. In all performance measures, the MARS model outperforms the MLR model across the selected sites.Article Citation - WoS: 8Citation - Scopus: 8Modeling the Mood State on Thermal Sensation With a Data Mining Algorithm and Testing the Accuracy of Mood State Correction Factor(Pergamon-elsevier Science Ltd, 2025) Yerlikaya-Ozkurt, Fatma; Ozbey, Mehmet Furkan; Turhan, CihanPsychology is proven as an influencing factor on thermal sensation. On the other hand, mood state is one of the significant parameters in psychology field. To this aim, in the literature, mood state correction factor on thermal sensation (Turhan and Ozbey coefficients) is derived utilizing with data-driven black-box model. However, novel models which present analytical form of the mood state correction factor should be derived based on the several descriptive variables on thermal sensation. Moreover, the result of this factor should also be checked with analytical model results. Therefore, this study investigates the modelling of mood state correction factor with a data mining algorithm, called Multivariate Adaptive Regression Splines (MARS). Additionally, the mood state is also taken as a thermal sensation parameter besides environmental parameters in this algorithm. The same data, which are collected from a university study hall in a temperate climate zone, are used and the model results are compared with the thermal sensation results based on mood state correction factor which is driven via black-box model. The results show that coefficient of correlation "r" between the MARS and black-box model is found as 0.9426 and 0.9420 for training and testing. Hence, the mood state is also modelled via a data mining algorithm with a high accuracy, besides the black-box model.
