Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 5
    Citation - Scopus: 6
    On the Design and Effectiveness of Simulink-Based Educational Material for a Communication Systems Course
    (Wiley, 2020) Coruk, R. Busra; Yalcinkaya, Bengisu; Kara, Ali
    The methods used in engineering education have gained diversity in parallel with rapidly evolving technology. New technological methods along with the traditional methods have been adopted for undergraduate education. Today, Simulink-based educational materials are used in many fields in engineering education. However, in the literature, the contribution of such educational materials to the learning process has not been measured thoroughly. This study presents a comprehensive measurement method to improve the created course material and show the effectiveness of developed course material in students' success. First, educational material was developed for an undergraduate electrical engineering course: communication systems. A feedback group made up of diverse student learners was employed extensively in the material development phase. Next, the impact of the developed material on the success of the students was examined using both qualitative and quantitative measurement tools including questionnaires, one-to-one interviews, and class and university level anonymous surveys. This also included students' performance regarding laboratory quizzes and achievement of course learning outcomes. Overall, the measurement results show that the course material increased students' success in the course. Moreover, students' general perception of the course material was positive.
  • Article
    From Street Canyons To Corridors: Adapting Urban Propagation Models for an Indoor IQRF Network
    (MDPI, 2025) Doyan, Talip Eren; Yalcinkaya, Bengisu; Dogan, Deren; Dalveren, Yaser; Derawi, Mohammad
    Among wireless communication technologies underlying Internet of Things (IoT)-based smart buildings, IQRF (Intelligent Connectivity Using Radio Frequency) technology is a promising candidate due to its low power consumption, cost-effectiveness, and wide coverage. However, effectively modeling the propagation characteristics of IQRF in complex indoor environments for simple and accurate network deployment remains challenging, as architectural elements like walls and corners cause substantial signal attenuation and unpredictable propagation behavior. This study investigates the applicability of a site-specific modeling approach, originally developed for urban street canyons, to characterize peer-to-peer (P2P) IQRF links operating at 868 MHz in typical indoor scenarios, including line-of-sight (LoS), one-turn, and two-turn non-line-of-sight (NLoS) configurations. The received signal powers are compared with well-known empirical models, including international telecommunication union radio communication sector (ITU-R) P.1238-9 and WINNER II, and ray-tracing simulations. The results show that while ITU-R P.1238-9 achieves lower prediction error under LoS conditions with a root mean square error (RMSE) of 5.694 dB, the site-specific approach achieves substantially higher accuracy in NLoS scenarios, maintaining RMSE values below 3.9 dB for one- and two-turn links. Furthermore, ray-tracing simulations exhibited notably larger deviations, with RMSE values ranging from 7.522 dB to 16.267 dB and lower correlation with measurements. These results demonstrate the potential of site-specific modeling to provide practical, computationally efficient, and accurate insights for IQRF network deployment planning in smart building environments.