2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 12Citation - Scopus: 13A two-step machine learning approach to predict S&P 500 bubbles(Taylor & Francis Ltd, 2021) Kabran, Fatma Basoglu; Unlu, Kamil DemirberkIn this paper, we are interested in predicting the bubbles in the S&P 500 stock market with a two-step machine learning approach that employs a real-time bubble detection test and support vector machine (SVM). SVM as a nonparametric binary classification technique is already a widely used method in financial time series forecasting. In the literature, a bubble is often defined as a situation where the asset price exceeds its fundamental value. As one of the early warning signals, prediction of bubbles is vital for policymakers and regulators who are responsible to take preemptive measures against the future crises. Therefore, many attempts have been made to understand the main factors in bubble formation and to predict them in their earlier phases. Our analysis consists of two steps. The first step is to identify the bubbles in the S&P 500 index using a widely recognized right-tailed unit root test. Then, SVM is employed to predict the bubbles by macroeconomic indicators. Also, we compare SVM with different supervised learning algorithms by usingk-fold cross-validation. The experimental results show that the proposed approach with high predictive power could be a favourable alternative in bubble prediction.Article Citation - WoS: 9Citation - Scopus: 7Identifying the Cycles in Covid-19 Infection: the Case of Turkey(Taylor & Francis Ltd, 2023) Akdi, Yilmaz; Karamanoglu, Yunus Emre; Unlu, Kamil Demirberk; Bas, CemThe new coronavirus disease, called COVID-19, has spread extremely quickly to more than 200 countries since its detection in December 2019 in China. COVID-19 marks the return of a very old and familiar enemy. Throughout human history, disasters such as earthquakes, volcanic eruptions and even wars have not caused more human losses than lethal diseases, which are caused by viruses, bacteria and parasites. The first COVID-19 case was detected in Turkey on 12 March 2020 and researchers have since then attempted to examine periodicity in the number of daily new cases. One of the most curious questions in the pandemic process that affects the whole world is whether there will be a second wave. Such questions can be answered by examining any periodicities in the series of daily cases. Periodic series are frequently seen in many disciplines. An important method based on harmonic regression is the focus of the study. The main aim of this study is to identify the hidden periodic structure of the daily infected cases. Infected case of Turkey is analyzed by using periodogram-based methodology. Our results revealed that there are 4, 5 and 62 days cycles in the daily new cases of Turkey.

