Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 18
    Citation - Scopus: 21
    A Data-Driven Model To Forecast Multi-Step Ahead Time Series of Turkish Daily Electricity Load
    (Mdpi, 2022) Unlu, Kamil Demirberk; Ünlü, Kamil Demirberk; Ünlü, Kamil Demirberk; Industrial Engineering; Industrial Engineering
    It is critical to maintain a balance between the supply and the demand for electricity because of its non-storable feature. For power-producing facilities and traders, an electrical load is a piece of fundamental and vital information to have, particularly in terms of production planning, daily operations, and unit obligations, among other things. This study offers a deep learning methodology to model and forecast multistep daily Turkish electricity loads using the data between 5 January 2015, and 26 December 2021. One major reason for the growing popularity of deep learning is the creation of new and creative deep neural network topologies and significant computational advancements. Long Short-Term Memory (LSTM), Gated Recurrent Network, and Convolutional Neural Network are trained and compared to forecast 1 day to 7 days ahead of daily electricity load. Three different performance metrics including coefficient of determination (R-2), root mean squared error, and mean absolute error were used to evaluate the performance of the proposed algorithms. The forecasting results on the test set showed that the best performance is achieved by LSTM. The algorithm has an R-2 of 0.94 for 1 day ahead forecast, and the metric decreases to 0.73 in 7 days ahead forecast.
  • Article
    Citation - WoS: 16
    Citation - Scopus: 20
    Forecasting Air Quality in Tripoli: an Evaluation of Deep Learning Models for Hourly Pm2.5 Surface Mass Concentrations
    (Mdpi, 2023) Esager, Marwa Winis Misbah; Unlu, Kamil Demirberk
    In this article, we aimed to study the forecasting of hourly PM2.5 surface mass concentrations in the city of Tripoli, Libya. We employed three state-of-the-art deep learning models, namely long short-term memory, gated recurrent unit, and convolutional neural networks, to forecast PM2.5 levels using univariate time series methodology. Our results revealed that the convolutional neural networks model performed the best, with a coefficient of variation of 99% and a mean absolute percentage error of 0.04. These findings provide valuable insights into the use of deep learning models for forecasting PM2.5 and can inform decision-making regarding air quality management in the city of Tripoli.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 6
    Strategic Electricity Production Planning of Turkey Via Mixed Integer Programming Based on Time Series Forecasting
    (Mdpi, 2023) Yoruk, Gokay; Bac, Ugur; Yerlikaya-Ozkurt, Fatma; Unlu, Kamil Demirberk
    This study examines Turkey's energy planning in terms of strategic planning, energy policy, electricity production planning, technology selection, and environmental policies. A mixed integer optimization model is proposed for strategic electricity planning in Turkey. A set of energy resources is considered simultaneously in this research, and in addition to cost minimization, different strategic level policies, such as CO2 emission reduction policies, energy resource import/export restriction policies, and renewable energy promotion policies, are also considered. To forecast electricity demand over the planning horizon, a variety of forecasting techniques, including regression methods, exponential smoothing, Winter's method, and Autoregressive Integrated Moving Average methods, are used, and the best method is chosen using various error measures. The optimization model constructed for Turkey's Strategic Electricity Planning is obtained for two different planning intervals. The findings indicate that the use of renewable energy generation options, such as solar, wind, and hydroelectric alternatives, will increase significantly, while the use of fossil fuels in energy generation will decrease sharply. The findings of this study suggest a gradual increase in investments in renewable energy-based electricity production strategies are required to eventually replace fossil fuel alternatives. This change not only reduces investment, operation, and maintenance costs, but also reduces emissions in the long term.