2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 34Citation - Scopus: 41Development of a Personalized Thermal Comfort Driven Controller for Hvac Systems(Pergamon-elsevier Science Ltd, 2021) Turhan, Cihan; Simani, Silvio; Akkurt, Gulden GokcenIncreasing thermal comfort and reducing energy consumption are two main objectives of advanced HVAC control systems. In this study, a thermal comfort driven control (PTC-DC) algorithm was developed to improve HVAC control systems with no need of retrofitting HVAC system components. A case building located in Izmir Institute of Technology Campus-Izmir-Turkey was selected to test the developed system. First, wireless sensors were installed to the building and a mobile application was developed to monitor/ collect temperature, relative humidity and thermal comfort data of an occupant. Then, the PTC-DC algorithm was developed to meet the highest occupant thermal comfort as well as saving energy. The prototypes of the controller were tested on the case building from July 3rd, 2017 to November 1st, 2018 and compared with a conventional PID controller. The results showed that the developed control algorithm and conventional controller satisfy neutral thermal comfort for 92 % and 6 % of total measurement days, respectively. From energy consumption point of view, the PTC-DC decreased energy consumption by 13.2 % compared to the conventional controller. Consequently, the PTC-DC differs from other works in the literature that the prototype of PTC-DC can be easily deployed in real environments. Moreover, the PTC-DC is low-cost and user-friendly. (c) 2021 Elsevier Ltd. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 8Modeling the Mood State on Thermal Sensation With a Data Mining Algorithm and Testing the Accuracy of Mood State Correction Factor(Pergamon-elsevier Science Ltd, 2025) Yerlikaya-Ozkurt, Fatma; Ozbey, Mehmet Furkan; Turhan, CihanPsychology is proven as an influencing factor on thermal sensation. On the other hand, mood state is one of the significant parameters in psychology field. To this aim, in the literature, mood state correction factor on thermal sensation (Turhan and Ozbey coefficients) is derived utilizing with data-driven black-box model. However, novel models which present analytical form of the mood state correction factor should be derived based on the several descriptive variables on thermal sensation. Moreover, the result of this factor should also be checked with analytical model results. Therefore, this study investigates the modelling of mood state correction factor with a data mining algorithm, called Multivariate Adaptive Regression Splines (MARS). Additionally, the mood state is also taken as a thermal sensation parameter besides environmental parameters in this algorithm. The same data, which are collected from a university study hall in a temperate climate zone, are used and the model results are compared with the thermal sensation results based on mood state correction factor which is driven via black-box model. The results show that coefficient of correlation "r" between the MARS and black-box model is found as 0.9426 and 0.9420 for training and testing. Hence, the mood state is also modelled via a data mining algorithm with a high accuracy, besides the black-box model.

