3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 2Citation - Scopus: 1The Continuity in Q of the Lupaş Q-Analogues of the Bernstein Operators(Academic Press inc Elsevier Science, 2024) Yilmaz, Ovgue Gurel; Turan, Mehmet; Ostrovska, Sofiya; Turan, Mehmet; Ostrovska, Sofiya; Turan, Mehmet; Ostrovska, Sofiya; Mathematics; MathematicsThe Lupas q-analogue Rn,q of the Bernstein operator is the first known q-version of the Bernstein polynomials. It had been proposed by A. Lupas in 1987, but gained the popularity only 20 years later, when q-analogues of classical operators pertinent to the approximation theory became an area of intensive research. In this work, the continuity of operators Rn,q with respect to parameter q in the strong operator topology and in the uniform operator topology has been investigated. The cases when n is fixed and n -> infinity have been considered. (c) 2022 Elsevier Inc. All rights reserved.Article Qualitative results on the convergence of the q-Bernstein polynomials(North Univ Baia Mare, 2015) Ostrovska, Sofiya; Turan, MehmetDespite many common features, the convergence properties of the Bernstein and the q-Bernstein polynomials are not alike. What is more, the cases 0 < q < 1 and q > 1 are not similar to each other in terms of convergence. In this work, new results demonstrating the striking differences which may occur in those convergence properties are presented.Article Citation - WoS: 1Citation - Scopus: 1On the Rate of Convergence for the q-durrmeyer Polynomials in Complex Domains(Walter de Gruyter Gmbh, 2024) Gurel, Ovgu; Ostrovska, Sofiya; Turan, MehmetThe q-Durrmeyer polynomials are one of the popular q-versions of the classical operators of approximation theory. They have been studied from different points of view by a number of researchers. The aim of this work is to estimate the rate of convergence for the sequence of the q-Durrmeyer polynomials in the case 0 < q < 1. It is proved that for any compact set D subset of C, the rate of convergence is O(q(n)) as n -> infinity. The sharpness of the obtained result is demonstrated.

