Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    The Distance Between Two Limit q-bernstein Operators
    (Rocky Mt Math Consortium, 2020) Ostrovska, Sofiya; Turan, Mehmet
    For q is an element of (0, 1), let B-q denote the limit q-Bernstein operator. The distance between B-q and B-r for distinct q and r in the operator norm on C[0, 1] is estimated, and it is proved that 1 <= parallel to B-q - B-r parallel to <= 2, where both of the equalities can be attained. Furthermore, the distance depends on whether or not r and q are rational powers of each other. For example, if r(j) not equal q(m) for all j, m is an element of N, then parallel to B-q - B-r parallel to = 2, and if r = q(m) for some m is an element of N, then parallel to B-q - B-r parallel to = 2(m - 1)/m.
  • Article
    Qualitative results on the convergence of the q-Bernstein polynomials
    (North Univ Baia Mare, 2015) Ostrovska, Sofiya; Turan, Mehmet
    Despite many common features, the convergence properties of the Bernstein and the q-Bernstein polynomials are not alike. What is more, the cases 0 < q < 1 and q > 1 are not similar to each other in terms of convergence. In this work, new results demonstrating the striking differences which may occur in those convergence properties are presented.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    On the Metric Space of the Limit q-bernstein Operators
    (Taylor & Francis inc, 2019) Ostrovska, Sofiya; Turan, Mehmet
    In this paper, some properties of uniformly discrete metric space are established. The metric rho comes out naturally in the evaluation of the distance between two limit q-Bernstein operators with respect to the operator norm on The exact value of this distance is found for all Furthermore, a number of properties of metric bases in M are presented alongside all possible isometries on M.