Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    On the eigenfunctions of the q-Bernstein operators
    (Springer Basel Ag, 2023) Ostrovska, Sofiya; Turan, Mehmet
    The eigenvalue problems for linear operators emerge in various practical applications in physics and engineering. This paper deals with the eigenvalue problems for the q-Bernstein operators, which play an important role in the q-boson theory of modern theoretical physics. The eigenstructure of the classical Bernstein operators was investigated in detail by S. Cooper and S. Waldron back in 2000. Some of their results were extended for other Bernstein-type operators, including the q-Bernstein and the limit q-Bernstein operators. The current study is a pursuit of this research. The aim of the present work is twofold. First, to derive for the q-Bernstein polynomials analogues of the Cooper-Waldron results on zeroes of the eigenfunctions. Next, to present in detail the proof concerning the existence of non-polynomial eigenfunctions for the limit q-Bernstein operator.
  • Article
    The Saturation of Convergence for the Complex q-durrmeyer Polynomials
    (Springer Basel Ag, 2025) Gurel, Ovgu; Ostrovska, Sofiya; Turan, Mehmet
    The aim of this paper is to establish a saturation result for the complex q-Durrmeyer polynomials (Dn,qf)(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D_{n,q}f)(z)$$\end{document}, where q is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in (0,1)$$\end{document}, f is an element of C[0,1].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in C[0,1].$$\end{document} It is known that the sequence {(Dn,qf)(z)}n is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{(D_{n,q}f)(z)\}_{n \in {\mathbb {N}}}$$\end{document} converges uniformly on any compact set in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document} to the limit function (D infinity,qf)(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D_{\infty ,q}f)(z)$$\end{document}, which, therefore, is entire. Previously, the rate of this convergence has been estimated as O(qn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(q<^>n)$$\end{document}, n ->infinity.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty . $$\end{document} In the present article, this result is refined to derive Voronovskaya-type formula and to demonstrate that this rate is o(qn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(q<^>n)$$\end{document}, n ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty $$\end{document} on a set possessing an accumulation point if and only if f takes on the same value at all qj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q<^>j$$\end{document}, j is an element of N0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j \in {\mathbb {N}}_{0}$$\end{document}.
  • Article
    Moment Determinacy Versus q-moment Determinacy of Probability Distributions
    (Springer Basel Ag, 2021) Ostrovska, Sofiya; Turan, Mehmet
    Since the classical moment problem is an important issue deeply connected to various mathematical disciplines, its q-analogue based on the notion of q-moments has emerged in the study of q-distributions. For a wide class of probability distributions, both of these problems can be considered. The aim of this work is to establish a connection between the two moment problems. In this paper, the class A of probability distributions possessing finite moments of all orders and support on (0, infinity) is examined. For each q is an element of(0,1), a distribution P is an element of A can be characterized with respect to moment-determinacy as well as q-moment determinacy. It is proved that the properties of P regarding these characterizations may differ, and that the q-moment determinacy of P may depend on the value of q.