Search Results

Now showing 1 - 2 of 2
  • Article
    How Analytic Properties of Functions Influence Their Images Under the Limit q-Stancu Operator
    (Springer Basel AG, 2026) Gurel, Ovgu; Ostrovska, Sofiya; Turan, Mehmet
    In the study of various q-versions of the Bernstein polynomials, a significant attention is paid to their limit operators. The present work focuses on the impact of the limit q-Stancu operator Sq infinity,alpha on the analytic properties of functions when 0 < q < 1 and alpha > 0. It is shown that for every f is an element of C[0, 1], the function S-q,(alpha infinity)fadmits an analytic continuation into the disk {z : z+alpha/(1-q) < 1+ alpha/(1-q)}. In addition, it is proved that the more derivatives f has at x = 1, the wider this disk becomes. Further, if f is infinitely differentiable at x = 1, then the function S-q,(alpha infinity)fis entire. Finally, some growth estimates for (S-q,(alpha infinity)f)(z) are obtained.
  • Article
    A Decomposition of the Limit Q-Bernstein Type Operators Via a Universal Factor
    (Springer Basel AG, 2026) Ostrovska, Sofiya; Pirimoglu, Lutfi Atahan; Turan, Mehmet
    The focus of this work is on the properties of the unifying operator Uq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q$$\end{document} on C[0, 1], which serves as a universal left factor in a decomposition of the limit q-Bernstein type operators, L infinity,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\infty ,q}$$\end{document}. More precisely, the factorization L infinity,q=Uq degrees TL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\infty ,q}= U_q\circ T_L$$\end{document}, where TL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_L$$\end{document} is a linear operator on C[0, 1] depending on L, holds. It is shown that this factorization facilitates the derivation of new results and/or the simplification of proofs for the known ones.