27 results
Search Results
Now showing 1 - 10 of 27
Article On the Lupas q-transform of Unbounded Functions(Walter de Gruyter Gmbh, 2023) Ostrovska, Sofiya; Turan, MehmetThe Lupa , s q-transform comes out naturally in the study of the Lupa , s q-analogue of the Bernstein operator. It is closely related to the Heine q-distribution which has a numerous application in q-boson operator calculus and to the Valiron method of summation for divergent series. In this paper, the Lupa , s q-transform (lambda(q)f)(z), q is an element of (0, 1), of unbounded functions is considered in distinction to the previous researches, where only the case f is an element of C[0, 1] have been investigated. First, the condition for a function to possess the Lupa , s q-transform is presented. Also, results concerning the connection between growth rate of the function f (t) as t -> 1(-) and the growth of its Lupa , s q-transform (lambda(q)f)(z) as z -> infinity are established. (c) 2023 Mathematical Institute Slovak Academy of SciencesArticle Citation - WoS: 2Citation - Scopus: 1The Continuity in Q of the Lupaş Q-Analogues of the Bernstein Operators(Academic Press inc Elsevier Science, 2024) Yilmaz, Ovgue Gurel; Turan, Mehmet; Ostrovska, Sofiya; Turan, Mehmet; Ostrovska, Sofiya; Turan, Mehmet; Ostrovska, Sofiya; Mathematics; MathematicsThe Lupas q-analogue Rn,q of the Bernstein operator is the first known q-version of the Bernstein polynomials. It had been proposed by A. Lupas in 1987, but gained the popularity only 20 years later, when q-analogues of classical operators pertinent to the approximation theory became an area of intensive research. In this work, the continuity of operators Rn,q with respect to parameter q in the strong operator topology and in the uniform operator topology has been investigated. The cases when n is fixed and n -> infinity have been considered. (c) 2022 Elsevier Inc. All rights reserved.Conference Object Citation - WoS: 2The Limit q-bernstein Operators With Varying q(Springer international Publishing Ag, 2019) Almesbahi, Manal Mastafa; Ostrovska, Sofiya; Turan, Mehmet[No Abstract Available]Conference Object Density-Aware Outage in Clustered Ad Hoc Networks(Ieee, 2018) Eroglu, Alperen; Onur, Ertan; Turan, MehmetDensity of ad hoc networks may vary in time and space because of mobile stations, sleep scheduling or failure of nodes. Resources such as spectrum will be wasted if the network is not density-aware and -adaptive. Towards this aim, distributed and robust network density estimators are required. In this paper, we propose a novel cluster density estimator in random ad hoc networks by employing distance matrix. Monte-Carlo simulation results validate the proposed estimator. The accuracy of the estimator is impressive even under a high amount of distance measurement errors. We also propose a network outage model and a transmit power adaption technique that are density-aware. The results indicate the necessity of the density-aware solutions for making network performance better from capacity, coverage and energy conservation viewpoints.Article Citation - WoS: 1Citation - Scopus: 1On the q-moment Determinacy of Probability Distributions(Malaysian Mathematical Sciences Soc, 2020) Ostrovska, Sofiya; Turan, MehmetGiven 0Article Citation - WoS: 4Citation - Scopus: 5Stability Analysis of an Epidemic Model With Vaccination and Time Delay(Wiley, 2023) Turan, Mehmet; Adiguzel, Rezan Sevinik; Koc, F.This paper presents an epidemic model with varying population, incorporating a new vaccination strategy and time delay. It investigates the impact of vaccination with respect to vaccine efficacy and the time required to see the effects, followed by determining how to control the spread of the disease according to the basic reproduction ratio of the disease. Some numerical simulations are provided to illustrate the theoretical results.Article Qualitative results on the convergence of the q-Bernstein polynomials(North Univ Baia Mare, 2015) Ostrovska, Sofiya; Turan, MehmetDespite many common features, the convergence properties of the Bernstein and the q-Bernstein polynomials are not alike. What is more, the cases 0 < q < 1 and q > 1 are not similar to each other in terms of convergence. In this work, new results demonstrating the striking differences which may occur in those convergence properties are presented.Article Citation - WoS: 1Citation - Scopus: 1Shape-Preserving Properties of the Limit q-durrmeyer Operator(Academic Press inc Elsevier Science, 2024) Yilmaz, Ovgu Gurel; Ostrovska, Sofiya; Turan, MehmetThe present work aims to establish the shape-preserving properties of the limit q- Durrmeyer operator, D q for 0 < q < 1. It has been proved that the operator is monotonicity- and convexity-preserving. What is more, it maps a function m - convex along {q (j)}(infinity)(j =0) to a function m - convex along any sequence { xq( j )}(infinity)(j =0) , x is an element of (0, 1). (c) 2024 Elsevier Inc. All rights reserved.Article Citation - WoS: 1Citation - Scopus: 1On the Rate of Convergence for the q-durrmeyer Polynomials in Complex Domains(Walter de Gruyter Gmbh, 2024) Gurel, Ovgu; Ostrovska, Sofiya; Turan, MehmetThe q-Durrmeyer polynomials are one of the popular q-versions of the classical operators of approximation theory. They have been studied from different points of view by a number of researchers. The aim of this work is to estimate the rate of convergence for the sequence of the q-Durrmeyer polynomials in the case 0 < q < 1. It is proved that for any compact set D subset of C, the rate of convergence is O(q(n)) as n -> infinity. The sharpness of the obtained result is demonstrated.Article On the Injectivity With Respect To q of the Lupas q-transform(Taylor & Francis Ltd, 2024) Yilmaz, Ovgue Gurel; Ostrovska, Sofiya; Turan, MehmetThe Lupas q-transform has first appeared in the study of the Lupas q-analogue of the Bernstein operator. Given 0 < q < 1 and f is an element of C[0, 1], the Lupas q-transform is defined by Lambda(q)(f; x) Pi(infinity)(k=0) 1/1 + q(k)x Sigma(k=0)f(1 - q(k))q(k(k-1)/2)x(k)/(1 - q)(1 - q(2)) center dot center dot center dot (1 - q(k)), x >= 0. During the last decades, this transform has been investigated from a variety of angles, including its analytical, geometric features, and properties of its block functions along with their sums. As opposed to the available studies dealing with a fixed value of q, the present work is focused on the injectivity of Lambda(q) with respect to parameter q. More precisely, the conditions on f such that equality Lambda(q)(f; x) = Lambda(r)(f; x); x >= 0 implies q = r have been established.
- «
- 1 (current)
- 2
- 3
- »

