3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 7Citation - Scopus: 10Comparison of Three Different Learning Methods of Multilayer Perceptron Neural Network for Wind Speed Forecasting(Gazi Univ, 2021) Bulut, Mehmet; Tora, Hakan; Buaisha, Dr.magdiIn the world, electric power is the highest need for high prosperity and comfortable living standards. The security of energy supply is an essential concept in national energy management. Therefore, ensuring the security of electricity supply requires accurate estimates of electricity demand. The share of electricity generation from renewables is significantly growing in the world. This kind of energy types are dependent on weather conditions as the wind and solar energies. There are two vital requirements to locate and measure specific systems to utilize wind power: modelling and forecasting of the wind velocity. To this end, using only 4 years of measured meteorological data, the present research attempts to estimate the related speed of wind within the Libyan Mediterranean coast with the help of ANN (artificial neural networking) with three different learning algorithms, which are Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient. Conclusions reached in this study show that wind speed can be estimated within acceptable limits using a limited set of meteorological data. In the results obtained, it was seen that the SCG algorithm gave better results in tests in this study with less data.Article Citation - WoS: 1Citation - Scopus: 1Neural Network Based Estimation of Resonant Frequency of an Equilateral Triangular Microstrip Patch Antenna(Univ Osijek, Tech Fac, 2013) Kapusuz, Kamil Yavuz; Tora, Hakan; Can, Sultan; Airframe and Powerplant Maintenance; Department of Electrical & Electronics EngineeringThis study proposes an artificial neural network (ANN) model in order to approximate the resonant frequencies of equilateral triangular patch antennas. The neural network structure applied here is trained and tested for both single-layer and double-layer antennas. It is shown upon experiment that the resonant frequencies obtained from the neural network are both more accurate than the calculated frequencies by formula and satisfactorily close to the measured frequencies. Results appear to be promising as per the available literature. This paper also may offer more efficient approach to developing antennas of such nature. While the total absolute error of 7 MHz and the average error of 0,09 % are achieved for single-layer antenna, the total absolute and average errors are 49 MHz and 0,07 % for the double-layered antenna, respectively.Article Citation - WoS: 5Citation - Scopus: 5Hierarchical Classification of Analog and Digital Modulation Schemes Using Higher-Order Statistics and Support Vector Machines(Springer, 2024) Yalcinkaya, Bengisu; Coruk, Remziye Busra; Kara, Ali; Tora, HakanAutomatic modulation classification (AMC) algorithms are crucial for various military and commercial applications. There have been numerous AMC algorithms reported in the literature, most of which focus on synthetic signals with a limited number of modulation types having distinctive constellations. The efficient classification of high-order modulation schemes under real propagation effects using models with low complexity still remains difficult. In this paper, employing quadratic SVM, a feature-based hierarchical classification method is proposed to accurately classify especially higher-order modulation schemes and its performance is investigated using over the air (OTA) collected data. Statistical features, higher-order moments, and higher-order cumulants are utilized as features. Then, the performances of some well-known classifiers are evaluated, and the classifier presenting the best performance is employed in the proposed hierarchical classification model. An OTA dataset containing 17 analog and digital modulation schemes is used to assess the performance of the proposed classification model. With the proposed hierarchical classification algorithm, a significant improvement has been achieved, especially in higher-order modulation schemes. The overall accuracy with the proposed hierarchical structure is 96% after 5 dB signal-to-noise ratio value, approximately a 10% increase is achieved compared to the traditional classification algorithm.

