Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Risk Assessment of Sea Level Rise for Karasu Coastal Area, Turkey
    (Mdpi, 2023) Eliawa, Ali; Genc, Asli Numanoglu; Tora, Hakan; Maras, Hadi Hakan
    Sea Level Rise (SLR) due to global warming is becoming a more pressing issue for coastal zones. This paper presents an overall analysis to assess the risk of a low-lying coastal area in Karasu, Turkey. For SLR scenarios of 1 m, 2 m, and 3 m by 2100, inundation levels were visualized using Digital Elevation Model (DEM). The eight-side rule is applied as an algorithm through Geographic Information System (GIS) using ArcMap software with high-resolution DEM data generated by eleven 1:5000 scale topographic maps. The outcomes of GIS-based inundation maps indicated 1.40%, 6.02%, and 29.27% of the total land area by 1 m, 2 m, and 3 m SLR scenarios, respectively. Risk maps have shown that water bodies, low-lying urban areas, arable land, and beach areas have a higher risk at 1 m. In a 2 m scenario, along with the risk of the 1 m scenario, forests become at risk as well. For the 3 m scenario, almost all the territorial features of the Karasu coast are found to be inundated. The effect of SLR scenarios based on population and Gross Domestic Product (GDP) is also analyzed. It is found that the 2 and 3 m scenarios lead to a much higher risk compared to the 1 m scenario. The combined hazard-vulnerability data shows that estuarine areas on the west and east of the Karasu region have a medium vulnerability. These results provide primary assessment data for the Karasu region for the decision-makers to enhance land use policies and coastal management plans.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Hierarchical Classification of Analog and Digital Modulation Schemes Using Higher-Order Statistics and Support Vector Machines
    (Springer, 2024) Yalcinkaya, Bengisu; Coruk, Remziye Busra; Kara, Ali; Tora, Hakan
    Automatic modulation classification (AMC) algorithms are crucial for various military and commercial applications. There have been numerous AMC algorithms reported in the literature, most of which focus on synthetic signals with a limited number of modulation types having distinctive constellations. The efficient classification of high-order modulation schemes under real propagation effects using models with low complexity still remains difficult. In this paper, employing quadratic SVM, a feature-based hierarchical classification method is proposed to accurately classify especially higher-order modulation schemes and its performance is investigated using over the air (OTA) collected data. Statistical features, higher-order moments, and higher-order cumulants are utilized as features. Then, the performances of some well-known classifiers are evaluated, and the classifier presenting the best performance is employed in the proposed hierarchical classification model. An OTA dataset containing 17 analog and digital modulation schemes is used to assess the performance of the proposed classification model. With the proposed hierarchical classification algorithm, a significant improvement has been achieved, especially in higher-order modulation schemes. The overall accuracy with the proposed hierarchical structure is 96% after 5 dB signal-to-noise ratio value, approximately a 10% increase is achieved compared to the traditional classification algorithm.