2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 2Citation - Scopus: 2Risk Assessment of Sea Level Rise for Karasu Coastal Area, Turkey(Mdpi, 2023) Eliawa, Ali; Genc, Asli Numanoglu; Tora, Hakan; Maras, Hadi HakanSea Level Rise (SLR) due to global warming is becoming a more pressing issue for coastal zones. This paper presents an overall analysis to assess the risk of a low-lying coastal area in Karasu, Turkey. For SLR scenarios of 1 m, 2 m, and 3 m by 2100, inundation levels were visualized using Digital Elevation Model (DEM). The eight-side rule is applied as an algorithm through Geographic Information System (GIS) using ArcMap software with high-resolution DEM data generated by eleven 1:5000 scale topographic maps. The outcomes of GIS-based inundation maps indicated 1.40%, 6.02%, and 29.27% of the total land area by 1 m, 2 m, and 3 m SLR scenarios, respectively. Risk maps have shown that water bodies, low-lying urban areas, arable land, and beach areas have a higher risk at 1 m. In a 2 m scenario, along with the risk of the 1 m scenario, forests become at risk as well. For the 3 m scenario, almost all the territorial features of the Karasu coast are found to be inundated. The effect of SLR scenarios based on population and Gross Domestic Product (GDP) is also analyzed. It is found that the 2 and 3 m scenarios lead to a much higher risk compared to the 1 m scenario. The combined hazard-vulnerability data shows that estuarine areas on the west and east of the Karasu region have a medium vulnerability. These results provide primary assessment data for the Karasu region for the decision-makers to enhance land use policies and coastal management plans.Article Citation - Scopus: 1Two-Stage Feature Generator for Handwritten Digit Classification(Mdpi, 2023) Pirim, M. Altinay Gunler; Tora, Hakan; Oztoprak, Kasim; Butun, IsmailIn this paper, a novel feature generator framework is proposed for handwritten digit classification. The proposed framework includes a two-stage cascaded feature generator. The first stage is based on principal component analysis (PCA), which generates projected data on principal components as features. The second one is constructed by a partially trained neural network (PTNN), which uses projected data as inputs and generates hidden layer outputs as features. The features obtained from the PCA and PTNN-based feature generator are tested on the MNIST and USPS datasets designed for handwritten digit sets. Minimum distance classifier (MDC) and support vector machine (SVM) methods are exploited as classifiers for the obtained features in association with this framework. The performance evaluation results show that the proposed framework outperforms the state-of-the-art techniques and achieves accuracies of 99.9815% and 99.9863% on the MNIST and USPS datasets, respectively. The results also show that the proposed framework achieves almost perfect accuracies, even with significantly small training data sizes.

