Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 32
    Citation - Scopus: 35
    Mechanical, Thermal, Melt-Flow and Morphological Characterizations of Bentonite-Filled Abs Copolymer
    (Emerald Group Publishing Ltd, 2020) Alhallak, Laylay Mustafa; Tirkes, Seha; Tayfun, Umit
    Purpose This study aims to investigate the mechanical, thermal, melt-flow and morphological behavior of acrylonitrile-butadiene-styrene (ABS)-based composites after bentonite inclusions. Melt mixing is the most preferred production method in industrial scale and basically it has very near processing parameters compared to 3D printing applications. Rheological parameters of ABS and its composites are important for 3D applications. Melt flow behavior of ABS effects the fabrication of 3D printed product at desired levels. Shear thinning and non-Newtonian viscosity characteristics of ABS make viscosity control easier and more flexible for several processing techniques including injection molding, compression molding and 3D printing. Design/methodology/approach ABS copolymer was reinforced with bentonite mineral (BNT) at four different loading ratios of 5%, 10%, 15% and 20%. ABS/BNT composites were fabricated by lab-scale micro-compounder followed by injection molding process. Mechanical, thermo-mechanical, thermal, melt-flow and morphological properties of composites were investigated by tensile, hardness and impact tests, dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA), melt flow index (MFI) test and scanning electron microscopy (SEM), respectively. Findings Mechanical tests revealed that tensile strength, elongation and hardness of ABS were enhanced as BNT content increased. Glass transition temperature and storage modulus of ABS exhibited increasing trend with the additions of BNT. However, impact strength values dropped down with BNT inclusion. According to MFI test measurements, BNT incorporation displayed no significant change for MFI value of ABS. Homogeneous dispersion of BNT particles into ABS phase was deduced from SEM micrographs of composites. Loading ratio of 15% BNT was remarked as the most suitable candidate among fabricated ABS-based composites according to findings. Research limitations/implications The advanced mechanical properties and easy processing characteristics are the reasons for usage of ABS as an engineering plastic. Owing to the increase in its usage for 3D printing technology, the ABS became popular in recent years. The utilization of ABS in this technology is in filament form with various colors and dimensions. This is because of its proper rheological features. Practical implications Melt-mixing technique was used as preparation of composites, as this processing method is widely applied in industry. This method is also providing similar processing methodology with 3D printing technology. Originality/value According to the literature survey, to the best of the authors' knowledge, this study is the first research work regarding the melt-flow performance of ABS-based composites to evaluate their 3D printing applications and processability. ABS and BNT containing composites were characterized by tensile, impact and shore hardness tests, DMA, TGA), MFI test and SEM techniques.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 17
    Hybrid Nanocomposites of Elastomeric Polyurethane Containing Halloysite Nanotubes and Poss Nanoparticles: Tensile, Hardness, Damping and Abrasion Performance
    (Cambridge Univ Press, 2020) Mohamed, Salma Taher; Tirkes, Seha; Akar, Alinda Oyku; Tayfun, Umit
    Thermoplastic polyurethane (TPU) matrix was reinforced with polyhedral oligomeric silsesquioxane (POSS) and halloysite nanotubes (HNT), both separately and combined. Composite samples were fabricated using a melt-compounding method. Characterization of the composites obtained was performed via tensile and hardness tests, melt-flow index measurements (MFI), abrasion tests, dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM) to investigate the mechanical performance, flow behaviour, tribological characteristics, thermo-mechanical response and morphological properties. The greatest tensile strength value was obtained for the smallest HNT content. Further addition of HNT resulted in agglomerations for both POSS and HNT particles. The shore hardness of TPU was enhanced by filler inclusions. The TPU/POSS composites displayed significant improvement in terms of abrasion resistance compared to TPU at lower loading levels. The DMA study showed that composites containing 0.5% POSS and 1.0% HNT displayed the greatest storage modulus. The glass-transition temperature of TPU shifted to smaller values with the addition of both nanoparticles. The HNT inclusions increased the MFI value of TPU because of their large aspect ratio. Homogeneous mixing of nanoparticles in the TPU matrix was confirmed by a SEM study of the composites. Their dispersion decreased as the concentrations of POSS and HNT increased. An adjuvant effect of POSS with HNT was achieved in their hybrid composites.
  • Article
    Citation - WoS: 15
    Citation - Scopus: 17
    Development of Barite-Filled Acrylonitrile Butadiene Styrene Composites: Mechanical, Thermal, Melt-Flow and Morphological Characterizations
    (Elsevier, 2021) Madkour, Salma Ali; Tirkes, Seha; Tayfun, Umit
    Barite mineral (BRT) was compounded with acrylonitrile butadiene styrene terpolymer (ABS) with four varied filling ratio of 5%, 10%, 15% and 20% by weight. ABS/BRT composites and unfilled ABS were fabricated by twin screw micro-extruder and test samples were shaped using injection molding process. Tensile tests, shore hardness measurements and impact tests, dynamic mechanical analysis (DMA), melt-flow index (MFI) study and scanning electron microscopy (SEM) characterization techniques were performed in order to investigate mechanical, thermo-mechanical, melt-flow and morphological performance of composites, respectively. Mechanical tests results showed that tensile strength and hardness of unfilled ABS were enhanced as BRT content increased. DMA study revealed that in addition to glass transition temperature, storage modulus of ABS raised by BRT inclusions. However, impact energy of ABS exhibited decreasing trend with the loading level of BRT. According to MFI measurements, BRT additions caused no significant change for MFI parameter of ABS regardless of concentration. It was confirmed by SEM microphotographs that the dispersion of BRT particles was found to be more homogeneous into ABS phase for their lower contents. The filling ratio of 10% BRT yield the highest performance among fabricated ABS based composites according to test results.