Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    A Short Note on Permutation Trinomials of Prescribed Type
    (Taylor & Francis inc, 2020) Akbal, Yildirim; Temur, Burcu Gulmez; Ongan, Pinar
    We show that there are no permutation trinomials of the form hox 1/4 x5 ox5oq1 xq1 1 over Fq2 where q is not a power of 2. Together with a result of Zha, Z., Hu, L., Fan, S., hox permutes Fq2 if q 1/4 2k where k 2 omod 4, this gives a complete classification of those q's such that hox permutes F-q(2).
  • Article
    Citation - WoS: 2
    A Specific Type of Permutation and Complete Permutation Polynomials Over Finite Fields
    (World Scientific Publ Co Pte Ltd, 2020) Ongan, Pinar; Gülmez Temür, Burcu; Temur, Burcu Gulmez; Gülmez Temür, Burcu; Mathematics; Mathematics
    In this paper, we study polynomials of the form f(x) = x (qn-1/q-1+1) + bx is an element of F-qn[x], where n = 5 and list all permutation polynomials (PPs) and complete permutation polynomials (CPPs) of this form. This type of polynomials were studied by Bassalygo and Zinoviev for the cases n = 2 and n = 3, Wu, Li, Helleseth and Zhang for the case n = 4, p not equal 2, Bassalygo and Zinoviev answered the question for the case n = 4, p= 2 and finally by Bartoli et al. for the case n = 6. Here, we determine all PPs and CPPs for the case n = 5.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Further Results on Fibre Products of Kummer Covers and Curves With Many Points Over Finite Fields
    (Amer inst Mathematical Sciences-aims, 2016) Ozbudak, Ferruh; Temur, Burcu Gulmez; Yayla, Oguz
    We study fibre products of an arbitrary number of Kummer covers of the projective line over F-q under suitable weak assumptions. If q - 1 = r(n) for some prime r, then we completely determine the number of rational points over a rational point of the projective line. Using this result we obtain explicit examples of fibre products of three Kummer covers supplying new entries for the current table of curves with many points (http://www.manypoints.org,October 31 2015).