4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 64Citation - Scopus: 74Production and Characterization of Poly (lactic Acid)-Based Biocomposites Filled With Basalt Fiber and Flax Fiber Hybrid(Sage Publications Ltd, 2020) Eselini, Najah; Tirkes, Seha; Akar, Alinda Oyku; Tayfun, UmitPoly (lactic acid) (PLA)-based biocomposites containing flax fiber (FF) and basalt fiber (BF) both separately and together were prepared by melt blending method at the total constant ratio of 30 wt%. Mechanical properties, thermo-mechanical characteristics, thermal stability, flow behaviors, water uptake, and morphology of composites were investigated by tensile, hardness and impact tests, dynamic mechanical analysis (DMA), thermal gravimetric analysis, melt flow index (MFI) test, water absorption, and scanning electron microscopy, respectively. Mechanical test results show that tensile strength, elongation, elastic modulus, and impact strength are extended up to higher values with increase in BF content in hybrid composites. Conversely, the presence of FF displays a negative effect in which these values drop down drastically as the FF concentration increases. On the other hand, slightly higher hardness values are obtained by the addition of FF at higher loadings. DMA analysis reveals that BF inclusion leads glass transition temperature of PLA to one point higher, but hybrid and FF containing composites shift that temperature to lower values. Storage moduli of composites are enhanced with the increase in BF concentration and remarkable decreases are observed for FF-filled composites. Hybrid composites exhibit average MFI values between PLA/FF and PLA/BF composites.Article Citation - WoS: 17Citation - Scopus: 19Physical and Mechanical Performance of Bentonite and Barite Loaded Low Density Polyethylene Composites: Influence of Surface Silanization of Minerals(Sage Publications Ltd, 2020) Elkawash, Hesham; Tirkes, Seha; Hacioglu, Firat; Tayfun, UmitIn this study, two kinds of mineral fillers, bentonite (BNT) and barite (BRT), were incorporated into low density polyethylene (LDPE) by extrusion process. Silane treatment was applied to BRT and BNT surfaces in order to increase their compatibility with LDPE matrix. Surface characteristics of fillers were examined by Fourier transformed infrared spectroscopy (FTIR). LDPE-based composites were prepared at a constant concentration of 10%wt for each additives. Test samples were shaped by injection molding process. Mechanical, thermo-mechanical, water repellency, melt-flow and morphological characterizations of LDPE and its composites were performed by tensile and impact tests, dynamic mechanical analysis (DMA), water absorption test, melt flow index (MFI) measurements and scanning electron microscopy (SEM) technique, respectively. Test results showed that surface treatments led to increase for final properties of composites since they promoted to stronger adhesion between minerals and LDPE matrix compared to untreated ones. Tensile and impact strength values, storage modulus and glass transition temperature of LDPE were improved by inclusion of silane treated minerals. BRT and BNT additions caused no remarkable changes with regard to MFI of LDPE. Additionally, silane modified mineral filled composites exhibited remarkable water resistance behavior. According to SEM analysis of composites, silane treated BNT and BRT containing samples displayed homogeneous dispersions into LDPE phase whereas debondings were observed for untreated BNT and BRT filled composites due to their weak adhesion to polymer matrix.Article Citation - WoS: 31Citation - Scopus: 34Mechanical, Thermo-Mechanical and Morphological Characterization of Abs Based Composites Loaded With Perlite Mineral(Iop Publishing Ltd, 2020) Alghadi, Aiah Mohamed; Tirkes, Seha; Tayfun, UmitAcrylonitrile-butadiene-styrene (ABS) copolymer was filled with perlite mineral (PER) at four different loading level of 2.5%, 5%, 10% and 15%. ABS/PER composites were produced using lab-scale micro-compounder followed by injection molding process. Mechanical, thermo-mechanical, melt-flow and morphological properties of composites were reported by tensile and impact tests, dynamic mechanical analysis (DMA), melt flow index (MFI) test and scanning electron microscopy (SEM), respectively. Mechanical characterizations revealed that tensile strength, elongation and Youngs? modulus of ABS were improved by PER inclusions. However, impact strength of ABS reduced with increase of PER concentration. Glass transition temperature of ABS displayed increasing trend for %5 concentration of PER. MFI test implied that PER addition caused slight decreasing for MFI value of unfilled ABS. Homogeneous dispersion of PER particles into ABS matrix for their lower loading level was obtained from SEM micrographs of composites. According to findings, 5% PER containing sample exhibited the best performance and it was remarked as the most suitable candidate among fabricated ABS based composites.Article Citation - WoS: 3Citation - Scopus: 3Comparative Performance Study of Acidic Pumice and Basic Pumice Inclusions for Acrylonitrile-Butadiene Composite Filaments(Mary Ann Liebert, inc, 2024) Tayfun, Umit; Tirkes, Seha; Dogan, Mehmet; Tirkes, Suha; Zahmakiran, MehmetThis study aims to evaluate the effective use of porous pumice powder as an additive in acrylonitrile-butadiene-styrene (ABS)-based composite materials. The influence of pumice addition on mechanical, thermomechanical, thermal, and physical properties of ABS filaments was reported. Two types of pumice, namely acidic pumice (AP) and basic pumice (BP), were melt compounded with ABS at loading levels of 5%, 10%, 15%, and 20% by weight using the melt extrusion preparation method. Composites were shaped into dog bone test specimens by the injection molding process. The physical properties of pumice powders were investigated by particle size analysis and X-ray spectroscopy techniques. Mechanical, thermomechanical, thermal, melt flow, and morphological behaviors of ABS/AP and ABS/BP composite filaments were proposed. According to test results, pumice addition led to an increase in the mechanical response of ABS up to a filling ratio of 10%. Further inclusion of pumice caused sharp reduction due to the possible agglomeration of pumice particles. Composites filled with AP yielded remarkably higher mechanical performance in terms of tensile, impact, and hardness strength compared with BP-loaded composites. According to thermal analyses, ABS exhibited higher thermal stability after incorporation of AP and BP. Pumice addition also resulted in raising the glass transition temperature of ABS. Melt flow index (MFI) findings revealed that addition of two types of pumice led to an opposite trend in the melt flow behavior of ABS filaments. Homogeneous dispersion of pumice particles into the ABS matrix when adding low amounts, as well as reduction in dispersion homogeneity with high amounts, of AP and BP was confirmed by scanning electron microscopy (SEM) micrographs.

