2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 6Citation - Scopus: 123-D Dynamic Uav Base Station Location Problem(informs, 2021) Cicek, Cihan Tugrul; Shen, Zuo-Jun Max; Gultekin, Hakan; Tavli, BulentWe address a dynamic covering location problem of an unmanned aerial vehicle base station (UAV-BS), in which the location sequence of a single UAV-BS in a wireless communication network is determined to satisfy data demand arising from ground users. This problem is especially relevant in the context of smart grid and disaster relief. The vertical movement ability of the UAV-BS and nonconvex covering functions in wireless communication restrict utilizing classical planar covering location approaches. Therefore, we develop new formulations to this emerging problem for a finite time horizon to maximize the total coverage. In particular, we develop a mixed-integer nonlinear programming formulation that is nonconvex in nature and propose a Lagrangean decomposition algorithm (LDA) to solve this formulation. Because of the high complexity of the problem, the LDA is still unable to find good local solutions to large-scale problems. Therefore, we develop a continuum approximation (CA) model and show that CA would be a promising approach in terms of both computational time and solution accuracy. Our numerical study also shows that the CA model can be a remedy to build efficient initial solutions for exact solution algorithms. Summary of Contribution: This paper addresses a facet of mixed integer nonlinear programming formulations. Dynamic facility location problems (DFLPs) arise in a wide range of applications. However, classical DFLPs typically focus on the two-dimensional spaces. Emerging technologies in wireless communication and some other promising application areas, such as smart grids, have brought new location problems that cannot be solved with classical approaches. For practical reasons, many research attempts to solve this new problem, especially by researchers whose primary research area is not OR, have seemed far from analyzing the characteristics of the formulations. Rather, solution-oriented greedy heuristics have been proposed. This paper has two main objectives: (i) to close the gap between practical and theoretical sides of this new problem with the help of current knowledge that OR possesses to solve facility location problems and (ii) to support the findings with an exhaustive computational study to show how these findings can be applied to practice.Article Citation - WoS: 4Citation - Scopus: 4Privacy Protection Via Joint Real and Reactive Load Shaping in Smart Grids(Elsevier, 2022) Kement, Cihan Emre; Ilic, Marija; Gultekin, Hakan; Cicek, Cihan Tugrul; Tavli, BulentFrequent metering of electricity consumption is crucial for demand-side management in smart grids. However, metered data can be processed fairly easily by employing well-established nonintrusive appliance load monitoring techniques to infer appliance usage, which reveals information about consumers' private lives. Existing load shaping techniques for privacy primarily focus only on altering metered real power, whereas smart meters collect reactive power consumption data as well for various purposes. This study addresses consumer privacy preservation via load shaping in a demand response scheme, considering both real and reactive power. We build a multi-objective optimization framework that enables us to characterize the interplay between privacy maximization, user cost minimization, and user discomfort minimization objectives. Our results reveal that minimizing information leakage due to a single component, e.g., real power, would suffer from overlooking information leakage due to the other component, e.g., reactive power, causing sub-optimal decisions. In fact, joint shaping of real and reactive power components results in the best possible privacy preservation performance, which leads to more than a twofold increase in privacy in terms of mutual information. (c) 2022 Elsevier Ltd. All rights reserved.

