Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 30
    Citation - Scopus: 32
    Equiatomic Quaternary Heusler Compounds Tivfez (z=al, Si, Ge): Half-Metallic Ferromagnetic Materials
    (Elsevier Science Sa, 2021) Gencer, A.; Surucu, O.; Usanmaz, D.; Khenata, R.; Candan, A.; Surucu, G.
    Equiatomic quaternary Heusler compounds (EQHCs) are very promising materials for spintronic applications due to their excellent electronic and magnetic properties. In this study, structural, electronic, magnetic, mechanic, and dynamic properties of TiVFeZ (Z=Al, Si, Ge) EQHCs are investigated. Three nonequivalent structural configurations of alpha, beta, and gamma type structures are considered. The gamma is defined as the most stable phase for all these compounds and has a half-metallic character. The predicted Curie temperatures of TiVFeAl, TiVFeSi, and TiVFeGe compounds are about 488 K, 256 K, and 306 K, respectively. We also show that TiVFeZ (Z=Al, Si, Ge) have thermodynamic, dynamic, and mechanical stabilities. The presented results reveal that these compounds are potential materials for spintronics applications. (C) 2021 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 9
    Innovative 2d Materials for Efficient Photocatalysis: a Comparative Study for Wsi2n4, Wge2n4, and Their Janus Counterpart Wsigen4 Monolayers
    (Pergamon-elsevier Science Ltd, 2024) Himmet, F.; Surucu, G.; Lisesivdin, S. B.; Surucu, O.; Altuntas, G.; Bostan, B.; Gencer, A.
    In pursuit of environmentally friendly and effective photocatalytic materials for water splitting, this research paper presents a thorough evaluation of WSi2N4, WGe2N4, and their Janus counterpart WSiGeN4 monolayers through the application of Density Functional Theory. The study elucidates the optical, electronic, and structural characteristics of these monolayers, thereby demonstrating their potential as highly favorable contenders for applications involving photocatalytic water splitting. By means of comprehensive optimization and analysis, it is shown that these monolayers possess advantageous characteristics, such as favorable band gaps, stable work functions, and stability over a broad pH range. These attributes are of utmost importance in ensuring the effectiveness of hydrogen evolution reaction (HER). The inclusion of Janus WSiGeN4, which possesses an intrinsic mirror asymmetry, significantly improves the photocatalytic efficacy of the material. This is achieved by meeting the demands of optimal redox reaction levels in both the conduction and valence bands. In conjunction with machine learning force fields, ab initio molecular dynamics (AIMD) simulations validate the thermal stability of these monolayers at 300 K. In addition, our analysis of the optical properties reveals substantial absorption in the visible spectrum - vital for photocatalytic applications powered by solar energy. In summary, the research highlights the potential of Janus WSiGeN4, WGe2N4, and WSi2N4 monolayers as multifunctional and effective substances for forthcoming photocatalytic water -splitting systems. This advancement indicates of a significant stride in the direction of sustainable energy solution development.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Temperature Effects on Optical Characteristics of Thermally Evaporated Cusbse2 Thin Films for Solar Cell Applications
    (Elsevier, 2022) Surucu, O.; Isik, M.; Terlemezoglu, M.; Bektas, T.; Gasanly, N. M.; Parlak, M.
    CuSbSe2 thin film was deposited by co-evaporation of binary CuSe and Sb2Se3 sources. The structural and morphological properties of the deposited thin film were investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis measurements. XRD pattern indicated that deposited thin film has an orthorhombic crystalline structure with the preferential orientation of (013) direction. SEM image presented that the thin film surface is almost uniform. The optical characteristics of the deposited CuSbSe2 thin film were investigated in detail by performing room temperature Raman, temperature-dependent transmittance spectroscopy, and photoluminescence techniques. Raman spectrum exhibited one mode at around 210 cm(-1) associated with A(g) vibrational mode. The derivative spectroscopy technique was used to obtain the band gap energy of the films. Temperature dependence of band gap energy was investigated by considering the Varshni model. The rate of change of band gap energy, absolute zero value of gap energy, and Debye temperature were determined as 1.3 x 10(-4) eV/K, 1.21 eV, and 297 +/- 51 K, respectively. The photoluminescence spectrum indicated the room temperature direct band gap energy as 1.30 eV.
  • Article
    Cu Doping of Sb2Se3 Thin Films Via Thermal Evaporation: Tailoring Structural and Optical Properties for Enhanced Photovoltaic Performance
    (Elsevier, 2025) Isik, M.; Surucu, O.; Bektas, T.; Parlak, M.
    In this study, Cu-doped Sb2Se3 thin films were successfully grown using the thermal evaporation method, and their structural and optical properties were systematically investigated. Three different samples with thickness of similar to 400 nm were analyzed: undoped, 1 %, and 2 % Cu-doped Sb2Se3. X-ray diffraction (XRD) analysis revealed well-defined peaks, confirming the orthorhombic crystalline nature of the films. Scanning electron microscopy (SEM) images showed a uniform surface morphology without any significant defects. The optical properties were examined through transmission measurements. The band gap energy determined by Tauc analysis decreased from 1.27 to 1.21 eV as the Cu doping increased from 0 % to 2 %, indicating that Cu incorporation modifies the electronic structure of Sb2Se3. Similarly, Urbach energy increased from 0.148 to 0.168 eV depending on Cu content, suggesting a rise in localized states due to increased structural disorder. These findings demonstrate that Cu doping influences the electronic structure and defect states of Sb2Se3, which is crucial for optimizing its performance in photovoltaic and optoelectronic applications.