2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 30Citation - Scopus: 32Equiatomic Quaternary Heusler Compounds Tivfez (z=al, Si, Ge): Half-Metallic Ferromagnetic Materials(Elsevier Science Sa, 2021) Gencer, A.; Surucu, O.; Usanmaz, D.; Khenata, R.; Candan, A.; Surucu, G.Equiatomic quaternary Heusler compounds (EQHCs) are very promising materials for spintronic applications due to their excellent electronic and magnetic properties. In this study, structural, electronic, magnetic, mechanic, and dynamic properties of TiVFeZ (Z=Al, Si, Ge) EQHCs are investigated. Three nonequivalent structural configurations of alpha, beta, and gamma type structures are considered. The gamma is defined as the most stable phase for all these compounds and has a half-metallic character. The predicted Curie temperatures of TiVFeAl, TiVFeSi, and TiVFeGe compounds are about 488 K, 256 K, and 306 K, respectively. We also show that TiVFeZ (Z=Al, Si, Ge) have thermodynamic, dynamic, and mechanical stabilities. The presented results reveal that these compounds are potential materials for spintronics applications. (C) 2021 Elsevier B.V. All rights reserved.Conference Object Citation - WoS: 4Citation - Scopus: 3Temperature-dependent material characterization of CuZnSe2 thin films(Elsevier Science Sa, 2020) Gullu, H. H.; Surucu, O.; Terlemezoglu, M.; Isik, M.; Ercelebi, C.; Gasanly, N. M.; Parlak, M.In the present work, CuZnSe2 (CZSe) thin films were co-deposited by magnetron sputtering of ZnSe and Cu targets. The structural analyses resulted in the stoichiometric elemental composition and polycrystalline nature without secondary phase contribution in the film structure. Optical and electrical properties of CZSe thin films were investigated using temperature-dependent optical transmission and electrical conductivity measurements. The band gap energy values were obtained using transmittance spectra under the light of expression relating absorption coefficient to incident photon energy. Band gap energy values were found in decreasing behavior from 2.31 to 2.27 eV with increase in temperature from 10 to 300 K. Temperature-band gap dependency was evaluated by Varshni and O'Donnell models to detail the optical parameters of the thin films. The experimental dark and photoconductivity values were investigated by thermionic emission model over the grain boundary potential. Room temperature conductivity values were obtained in between 0.91 and 4.65 ( x 10(-4) Omega(-1)cm(-1)) under various illumination intensities. Three different linear conductivity regions were observed in the temperature dependent profile. These linear regions were analyzed to extract the activation energy values.

