Search Results

Now showing 1 - 10 of 16
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Temperature Effects on Optical Characteristics of Thermally Evaporated Cusbse2 Thin Films for Solar Cell Applications
    (Elsevier, 2022) Surucu, O.; Isik, M.; Terlemezoglu, M.; Bektas, T.; Gasanly, N. M.; Parlak, M.
    CuSbSe2 thin film was deposited by co-evaporation of binary CuSe and Sb2Se3 sources. The structural and morphological properties of the deposited thin film were investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis measurements. XRD pattern indicated that deposited thin film has an orthorhombic crystalline structure with the preferential orientation of (013) direction. SEM image presented that the thin film surface is almost uniform. The optical characteristics of the deposited CuSbSe2 thin film were investigated in detail by performing room temperature Raman, temperature-dependent transmittance spectroscopy, and photoluminescence techniques. Raman spectrum exhibited one mode at around 210 cm(-1) associated with A(g) vibrational mode. The derivative spectroscopy technique was used to obtain the band gap energy of the films. Temperature dependence of band gap energy was investigated by considering the Varshni model. The rate of change of band gap energy, absolute zero value of gap energy, and Debye temperature were determined as 1.3 x 10(-4) eV/K, 1.21 eV, and 297 +/- 51 K, respectively. The photoluminescence spectrum indicated the room temperature direct band gap energy as 1.30 eV.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Performance Enhancement of Silicon Photodiodes Through the Integration of Green Synthesized Reduced Graphene Oxide Variants
    (Iop Publishing Ltd, 2024) Yildiz, D. E.; Sürücü, Özge; Surucu, O.; Balaban, H. Mert; Bilici, I; Yildirim, M.; Sürücü, Özge; Electrical-Electronics Engineering; Electrical-Electronics Engineering
    This study examines the potential of enhancing the optoelectronic properties of silicon photodiodes by producing and analyzing heterostructures that incorporate reduced graphene oxide (rGO) synthesized with silicon using different reduction methods. Graphene oxide (GO) was manufactured utilizing an enhanced Hummers' method. Subsequently, reduced graphene oxides (rGOs) were made by chemical and thermal reduction processes, which are considered ecologically friendly. The use of ascorbic acid to produce ascorbic acid-reduced graphene oxide (ArGO) and thermal processing to produce thermally reduced graphene oxide (TrGO) have significantly contributed to the development of high-performance photodiode technology. The electrical properties were carefully assessed under different levels of light, revealing the substantial impact of integrating reduced graphene oxides (rGOs) on the performance of the diodes. Comparing ArGO/Si, TrGO/Si, and GO/Si heterostructures shows that customized rGO has the potential to greatly influence the responsivity and efficiency of Si-based optoelectronic devices, making a significant contribution to photodiode technology.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 22
    Exploring Temperature-Dependent Bandgap and Urbach Energies in Cdte Thin Films for Optoelectronic Applications
    (Elsevier, 2024) Surucu, O.; Surucu, G.; Gasanly, N. M.; Parlak, M.; Isik, M.
    This study examines CdTe thin films deposited via RF magnetron sputtering, focusing on structural and optical properties. X-ray diffraction, Raman spectroscopy, and SEM assessed structural characteristics. Optical properties were analyzed through transmittance measurements from 10 to 300 K. Tauc plots and Varshni modeling revealed a temperature-dependent bandgap, increasing from 1.49 eV at room temperature to 1.57 eV at 10 K. Urbach energy rose from 82.7 to 93.7 meV with temperature. These results are essential for applications where temperature affects CdTe-based device performance.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Structural and Temperature-Tuned Bandgap Characteristics of Thermally Evaporated β-in2< Thin Films
    (Springer, 2021) Surucu, O.; Isik, M.; Terlemezoglu, M.; Gasanly, N. M.; Parlak, M.
    In2S3 is one of the attractive compounds taking remarkable interest in optoelectronic device applications. The present study reports the structural and optical characteristics of thermally evaporated beta-In2S3 thin films. The crystalline structure of the thin films was found as cubic taking into account the observed diffraction peaks in the X-ray diffraction pattern. The atomic compositional ratio of constituent elements was obtained as consistent with chemical formula of In2S3. Three peaks around 275, 309 and 369 cm(-1) were observed in the Raman spectrum. Temperature-tuned bandgap energy characteristics of the In2S3 thin films were revealed from the investigation of transmittance spectra obtained at various temperatures between 10 and 300 K. The analyses of the transmittance spectra indicated that direct bandgap energy of the In2S3 thin films decreases from 2.40 eV (at 10 K) to 2.37 eV (at 300 K) with the increase of measurement temperature. The bandgap energy vs. temperature relation was investigated by means of Varshni optical model. The fitting of the experimental data under the light of theoretical expression revealed the absolute zero bandgap energy, the rate of change of bandgap energy and Debye temperature.
  • Article
    Citation - WoS: 30
    Citation - Scopus: 32
    Equiatomic Quaternary Heusler Compounds Tivfez (z=al, Si, Ge): Half-Metallic Ferromagnetic Materials
    (Elsevier Science Sa, 2021) Gencer, A.; Surucu, O.; Usanmaz, D.; Khenata, R.; Candan, A.; Surucu, G.
    Equiatomic quaternary Heusler compounds (EQHCs) are very promising materials for spintronic applications due to their excellent electronic and magnetic properties. In this study, structural, electronic, magnetic, mechanic, and dynamic properties of TiVFeZ (Z=Al, Si, Ge) EQHCs are investigated. Three nonequivalent structural configurations of alpha, beta, and gamma type structures are considered. The gamma is defined as the most stable phase for all these compounds and has a half-metallic character. The predicted Curie temperatures of TiVFeAl, TiVFeSi, and TiVFeGe compounds are about 488 K, 256 K, and 306 K, respectively. We also show that TiVFeZ (Z=Al, Si, Ge) have thermodynamic, dynamic, and mechanical stabilities. The presented results reveal that these compounds are potential materials for spintronics applications. (C) 2021 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 45
    Citation - Scopus: 41
    Temperature-Dependent Optical Characteristics of Sputtered Nio Thin Films
    (Springer Heidelberg, 2022) Terlemezoglu, M.; Surucu, O.; Isik, M.; Gasanly, N. M.; Parlak, M.
    In this work, nickel oxide thin films were deposited by radio frequency magnetron sputtering technique. X-ray diffraction (XRD), scanning electron microscopy and energy-dispersive X-ray analysis methods were applied to reveal the structural and morphological properties of sputtered thin films. The XRD pattern of films confirmed the presence of the cubic phase of nickel oxide with the preferential orientation of (200) direction. The surface morphology of thin films was observed as almost uniform and smooth. Optical aspects of sputtered film were studied by employing the room temperature Raman and temperature-dependent transmittance spectroscopy techniques in the range of 10-300 K. Tauc relation and derivative spectroscopy techniques were applied to obtain the band gap energy of the films. In addition, the relation between the band gap energy and the temperature was investigated in detail considering the Varshni optical model. The absolute zero band gap energy, rate of change of band gap energy, and Debye temperature were obtained as 3.57 eV, - 2.77 x 10(-4) eV/K and 393 K, respectively.
  • Article
    Citation - WoS: 29
    Citation - Scopus: 29
    Frequency Effect on Electrical and Dielectric Characteristics of Hfo2-interlayered Si-Based Schottky Barrier Diode
    (Springer, 2020) Gullu, H. H.; Yildiz, D. E.; Surucu, O.; Parlak, M.
    This study reveals the electrical properties of In/HfO2/n-Si structure with atomic layer-deposited interfacial oxide layer, HfO2 thin film between In top metal contact and monocrystalline Si wafer substrate. From the dark current-voltage measurements, the diode structure showed good rectifying behavior and low saturation current of about two order of magnitude and 1.2 x 10(- 9) A, respectively. According to the conventional thermionic emission model, zero-bias barrier height and ideality factor were calculated from the forward bias current-voltage curve at room temperature under dark conditions as 0.79 eV and 4.22 eV, respectively. In order to get detailed information about density of interface states and series resistance of this structure, capacitance-voltage and conductance-voltage measurements in the frequency range of 10-1000 kHz were performed. As a result, a decreasing capacitance profile with increasing frequency was obtained. In addition, peak-like behavior in the capacitance profiles was observed and these were found to be the indication of density of states. Further analysis was performed on the evaluation of density of interface states values and these values were calculated by using two different methods: Hill-Coleman and high-low frequency capacitance. These profiles were also analyzed by eliminating the effect of series resistance values on the measured capacitance and conductance; then the values of corrected capacitance and conductance as a function of applied voltage were discussed. Based on these analyses on the capacitive characteristics of the diode, dielectric constant, dielectric loss, loss tangent, electrical conductivity, and the real and imaginary part of electric modulus were investigated for complete understanding on the diode characteristics.
  • Conference Object
    Citation - WoS: 4
    Citation - Scopus: 3
    Temperature-dependent material characterization of CuZnSe2 thin films
    (Elsevier Science Sa, 2020) Gullu, H. H.; Surucu, O.; Terlemezoglu, M.; Isik, M.; Ercelebi, C.; Gasanly, N. M.; Parlak, M.
    In the present work, CuZnSe2 (CZSe) thin films were co-deposited by magnetron sputtering of ZnSe and Cu targets. The structural analyses resulted in the stoichiometric elemental composition and polycrystalline nature without secondary phase contribution in the film structure. Optical and electrical properties of CZSe thin films were investigated using temperature-dependent optical transmission and electrical conductivity measurements. The band gap energy values were obtained using transmittance spectra under the light of expression relating absorption coefficient to incident photon energy. Band gap energy values were found in decreasing behavior from 2.31 to 2.27 eV with increase in temperature from 10 to 300 K. Temperature-band gap dependency was evaluated by Varshni and O'Donnell models to detail the optical parameters of the thin films. The experimental dark and photoconductivity values were investigated by thermionic emission model over the grain boundary potential. Room temperature conductivity values were obtained in between 0.91 and 4.65 ( x 10(-4) Omega(-1)cm(-1)) under various illumination intensities. Three different linear conductivity regions were observed in the temperature dependent profile. These linear regions were analyzed to extract the activation energy values.
  • Article
    Citation - WoS: 25
    Citation - Scopus: 25
    Temperature-Tuned Band Gap Properties of Mos2 Thin Films
    (Elsevier, 2020) Surucu, O.; Isik, M.; Gasanly, N. M.; Terlemezoglu, M.; Parlak, M.
    MoS2 is one of the fascinating members of transition metal dichalcogenides and has attracted great attention due to its various optoelectronic device applications and its characteristic as two-dimensional material. The present paper reports the structural and temperature tuned optical properties of MoS2 thin films grown by RF magnetron sputtering technique. It was observed that the atomic composition ratio of Mo:S was nearly equal to 1:2 and the deposited thin films have hexagonal crystalline structure exhibiting Raman peaks around 376 and 410 cm(-1). The band gap energies were determined as 1.66 and 1.71 eV at 300 and 10 K, respectively and temperature dependency of band gap energy was analyzed by means of Varshni and O'Donnell-Chen models. (C) 2020 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 4
    Pressure and Spin Effect on the Stability, Electronic and Mechanic Properties of Three Equiatomic Quaternary Heusler (fevhfz, Z = Al, Si, and Ge) Compounds
    (Elsevier, 2021) Surucu, G.; Gencer, A.; Surucu, O.; Usanmaz, D.; Candan, A.
    In this paper, three equiatomic quaternary Heusler compounds -FeVHfZ (Z = Al, Si, and Ge) - are investigated for their structural, magnetic, electronic, mechanic, and lattice dynamic properties under pressure effect. These compounds are optimized for under three structural types and three magnetic phases: beta is the most stable structure with ferromagnetic phase. The electronic properties reveal that FeVHfAl is a half-metal, and that FeVHfSi and FeVHfGe are spin gapless semiconductors. In addition to electronic band structure, possible hybridization and partial density of states are presented. Furthermore, the mechanical properties are studied, and the three-dimensional direction-dependent mechanical properties are visualized under varying pressure effects. Our results reveal the half-metal and spin gapless semiconductor nature of the ferromagnetic FeVHfZ com-pounds, making them promising materials for spintronics applications.