Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 6
    Classification of Parasite Egg Cells Using Gray Level Cooccurence Matrix and Knn
    (Scientific Publishers india, 2016) Sengul, Gokhan
    Parasite eggs are around 20 to 80 mu m dimensions, and they can be seen under microscopes only and their detection requires visual analyses of microscopic images, which requires human expertise and long analysis time. Besides visual analysis is very error prone to human procedures. In order to automatize this process, a number of studies are proposed in the literature. But there is still a gap between the preferred performance and the reported ones and it is necessary to increase the performance of the automatic parasite egg classification approaches. In this study a learning based statistical pattern recognition approach for parasite egg classification is proposed that will both decrease the time required for the manual classification by an expert and increase the performance of the previously suggested automated parasite egg classification approaches. The proposed method uses Gray-Level Co-occurrence Matrix as the feature extractor, which is a texture based statistical method that can differentiate the parasite egg cells based on their textures, and the k-Nearest Neighbourhood (kNN) classifier for the classification. The proposed method is tested on 14 parasite egg types commonly seen in humans. The results show that proposed method can classify the parasite egg cells with a performance rate of 99%.
  • Conference Object
    Citation - WoS: 1
    Gender Prediction by Using Local Binary Pattern and K Nearest Neighbor and Discriminant Analysis Classifications
    (Ieee, 2016) Camalan, Seda; Çamalan, Seda; Sengul, Gokhan; Şengül, Gökhan; Çamalan, Seda; Şengül, Gökhan; Information Systems Engineering; Computer Engineering; Information Systems Engineering; Computer Engineering
    In this study, gender prediction is investigated for the face images. To extract the features of the images, Local Binary Pattern (LBP) is used with its different parameters. To classify the images male or female, K-Nearest Neighbors (KNN) and Discriminant Analysis (DA) methods are used. Their performances according to the LBP parameters are compared. Also classification methods' parameters are changed and the comparison results are shown. These methods are applied on FERET database with 530 female and 731 male images. To have better performance, the face parts of the images are cropped then feature extraction and classification methods applied on the face part of the images.